Flood risk, and marine and coastal areas: Planning for climate change

2010 ◽  
pp. 314-348
2021 ◽  
Vol 764 ◽  
pp. 144439
Author(s):  
Shih-Chun Hsiao ◽  
Wen-Son Chiang ◽  
Jiun-Huei Jang ◽  
Han-Lun Wu ◽  
Wei-Shiun Lu ◽  
...  

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1187
Author(s):  
Wouter Julius Smolenaars ◽  
Spyridon Paparrizos ◽  
Saskia Werners ◽  
Fulco Ludwig

In recent decades, multiple flood events have had a devastating impact on soybean production in Argentina. Recent advances suggest that the frequency and intensity of destructive flood events on the Argentinian Pampas will increase under pressure from climate change. This paper provides bottom-up insight into the flood risk for soybean production systems under climate change and the suitability of adaptation strategies in two of the most flood-prone areas of the Pampas region. The flood risk perceptions of soybean producers were explored through interviews, translated into climatic indicators and then studied using a multi-model climate data analysis. Soybean producers perceived the present flood risk for rural accessibility to be of the highest concern, especially during the harvest and sowing seasons when heavy machinery needs to reach soybean lots. An analysis of climatic change projections found a rising trend in annual and harvest precipitation and a slight drying trend during the sowing season. This indicates that the flood risk for harvest accessibility may increase under climate change. Several adaptation strategies were identified that can systemically address flood risks, but these require collaborative action and cannot be undertaken by individual producers. The results suggest that if cooperative adaptation efforts are not made in the short term, the continued increase in flood risk may force soybean producers in the case study locations to shift away from soybean towards more robust land uses.


Author(s):  
Akira Hirano

AbstractImportant aspects for understanding the effects of climate change on tropical cyclones (TCs) are the frequency of TCs and their tracking patterns. Coastal areas are increasingly threatened by rising sea levels and associated storm surges brought on by TCs. Rice production in Myanmar relies strongly on low-lying coastal areas. This study aims to provide insights into the effects of global warming on TCs and the implications for sustainable development in vulnerable coastal areas in Myanmar. Using TC records from the International Best Track Archive for Climate Stewardship dataset during the 30-year period from 1983 to 2012, a hot spot analysis based on Getis-Ord (Gi*) statistics was conducted to identify the spatiotemporal patterns of TC tracks along the coast of Myanmar. The results revealed notable changes in some areas along the central to southern coasts during the study period. These included a considerable increase in TC tracks (p value < 0.01) near the Ayeyarwady Delta coast, otherwise known as “the rice bowl” of the nation. This finding aligns with trends in published studies and reinforced the observed trends with spatial statistics. With the intensification of TCs due to global warming, such a significant increase in TC experiences near the major rice-producing coastal region raises concerns about future agricultural sustainability.


2021 ◽  
Vol 13 (4) ◽  
pp. 675
Author(s):  
Afonso Ferreira ◽  
Vanda Brotas ◽  
Carla Palma ◽  
Carlos Borges ◽  
Ana C. Brito

Phytoplankton bloom phenology studies are fundamental for the understanding of marine ecosystems. Mismatches between fish spawning and plankton peak biomass will become more frequent with climate change, highlighting the need for thorough phenology studies in coastal areas. This study was the first to assess phytoplankton bloom phenology in the Western Iberian Coast (WIC), a complex coastal region in SW Europe, using a multisensor long-term ocean color remote sensing dataset with daily resolution. Using surface chlorophyll a (chl-a) and biogeophysical datasets, five phenoregions (i.e., areas with coherent phenology patterns) were defined. Oceanic phytoplankton communities were seen to form long, low-biomass spring blooms, mainly influenced by atmospheric phenomena and water column conditions. Blooms in northern waters are more akin to the classical spring bloom, while blooms in southern waters typically initiate in late autumn and terminate in late spring. Coastal phytoplankton are characterized by short, high-biomass, highly heterogeneous blooms, as nutrients, sea surface height, and horizontal water transport are essential in shaping phenology. Wind-driven upwelling and riverine input were major factors influencing bloom phenology in the coastal areas. This work is expected to contribute to the management of the WIC and other upwelling systems, particularly under the threat of climate change.


Author(s):  
Toon Haer ◽  
W. J. Wouter Botzen ◽  
Vincent van Roomen ◽  
Harry Connor ◽  
Jorge Zavala-Hidalgo ◽  
...  

Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost–benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’.


Sign in / Sign up

Export Citation Format

Share Document