CLIMATE CHANGE, THERMAL STRESS AND MORTALITY CHANGES

2013 ◽  
pp. 133-154
2006 ◽  
Vol 76 (4) ◽  
pp. 461-479 ◽  
Author(s):  
Brian Helmuth ◽  
Bernardo R. Broitman ◽  
Carol A. Blanchette ◽  
Sarah Gilman ◽  
Patricia Halpin ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hanna Leona Lokys ◽  
Jürgen Junk ◽  
Andreas Krein

Projected climate change will cause increasing air temperatures affecting human thermal comfort. In the highly populated areas of Western-Central Europe a large population will be exposed to these changes. In particular Luxembourg—with its dense population and the large cross-border commuter flows—is vulnerable to changing thermal stress. Based on climate change projections we assessed the impact of climate change on human thermal comfort over the next century using two common human-biometeorological indices, the Physiological Equivalent Temperature and the Universal Thermal Climate Index. To account for uncertainties, we used a multimodel ensemble of 12 transient simulations (1971–2098) with a spatial resolution of 25 km. In addition, the regional differences were analysed by a single regional climate model run with a spatial resolution of 1.3 km. For the future, trends in air temperature, vapour pressure, and both human-biometeorological indices could be determined. Cold stress levels will decrease significantly in the near future up to 2050, while the increase in heat stress turns statistically significant in the far future up to 2100. This results in a temporarily reduced overall thermal stress level but further increasing air temperatures will shift the thermal comfort towards heat stress.


2021 ◽  
Author(s):  
◽  
Holly Bennett

<p>As atmospheric CO₂ concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. This PhD thesis explores the response of four abundant Great Barrier Reef species – the phototrophic Carteriospongia foliascens and Cymbastela coralliophila and the heterotrophic Stylissa flabelliformis and Rhopaloeides odorabile to OW and OA levels predicted for 2100, under two CO₂ Representative Concentration Pathways (RCPs). The overall aim of this research is to bridge gaps in our understanding of how these important coral reef organisms will respond to projected climate change, to begin to explore whether a sponge dominated state is a possible future trajectory for coral reefs.  To determine the tolerance of adult sponges to climate change, these four species were exposed to OW and OA in the Australian Institute of Marine Science’s (AIMS) National Sea Simulator (SeaSim) in a 3-month experimental study. The first data chapter explores the physiological responses of these sponges to OW and OA to gain a broad understanding of sponge holobiont survival and functioning under these conditions. In this chapter I also address the hypothesis that phototrophic and heterotrophic sponges will exhibit differential responses to climate change. In the second and third data chapters I explore the cellular lipid and fatty acid composition of sponges, and how these biochemical constituents vary with OW and OA. Lipids and fatty acids are not only vital energy stores, they form the major components of cell membranes, and the structure and composition of these biochemical constituents ultimately determines the integrity and physiological competency of a cell. Therefore through these analyses I aimed to determine how OW and OA affects the metabolic balance of sponges, and to understand mechanisms underpinning observed systemic sponge responses. Finally, to provide greater insight into the population level impacts of climate change on tropical sponges, in the last data chapter I explore the response of the phototrophic species Carteriospongia foliascens to OW/OA throughout its developmental stages.   I found that while sponges can generally tolerate climate change scenarios predicted under the RCP6.0 conditions for 2100 (30ºC/ pH 7.8), environmental projections for the end of this century under the RCP8.5 (31.5ºC/ pH 7.6) will have significant implications for their survival. Temperature effects were much stronger than OA effects for all species; however, phototrophic and heterotrophic species responded differently to OA. Elevated pCO₂ exacerbated temperature stress in heterotrophic sponges but somewhat ameliorated thermal stress in phototrophic species. Furthermore, sponges with siliceous spiculated skeletons resisted the RCP 8.5 conditions for longer than the aspiculate species. Biochemical analysis revealed that spiculated species also have greater cell membrane support features, which is likely to contribute to the observed stress tolerance. I also found that the additional energy available to phototrophic sponges under OA conditions may be used for investment into cell membrane support, providing protection against thermal stress. Finally, larval survival and settlement success of C. foliascens was unaffected by OW and OA treatments, and juvenile sponges exhibited greater tolerance than their adult counterparts, again with evidence that OA reduces OW stress for some of these life stages.   Based on the species studied here, this thesis confirms that sponges are better able to deal with OW and OA levels predicted for 2100 under RCP6.0, compared to many corals for which survival in a high CO₂ world requires OW to remain below 1.5°C. This suggests sponges may be future ‘winners’ on coral reefs under global climate change. However, if CO₂ atm concentrations reach levels predicted under RCP8.5, the prognosis for sponge survival by the end of this century changes as inter-species sponge tolerances to OW and OA differ. Under this projection it is likely we will also start to see a shift in sponge populations to those dominated by phototrophic sponges with siliceous spiculated skeletons. Overall, this thesis gives a holistic view of OW and OA impacts on tropical sponges and provides the basis from which to explore the potential for a sponge-coral regime shift in a high CO₂ world.</p>


2022 ◽  
pp. 1779-1786
Author(s):  
Issam Ifaadassan ◽  
Ahmed Karmaoui ◽  
Mohammed Messouli ◽  
Houssam Ayt Ougougdal ◽  
Mohammed Khebiza Yacoubi ◽  
...  

The argan tree is exclusively endemic in the drylands of Southwest Morocco, an agroecosystem of great ecological, cultural, and economic importance. The argan agroecosystem is already damaged. It is particularly vulnerable to climate change as well as the harsh natural conditions aggravated by the current population growth and the exploitation in excess of the production capacities. Unfortunately, during the 20th century, its area has been reduced by half. Current projections indicate an increase in temperature under climate scenarios. Anticipated climate change could accelerate this trend resulting in the argan tree degradation. To assess the climate change impact, the authors used the SDSM model at the argan agroecosystem scale and the thermal stress model to assess its vulnerability and estimate its tolerance response in relation to temperature stress for a projected climate in the near term (2010-2025 years). In this chapter, the authors explored the impact of climate change on the argan tree regeneration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nicole Costa Resende Ferreira ◽  
Minella Martins ◽  
Priscila da Silva Tavares ◽  
Sin Chan Chou ◽  
Armando Monteiro ◽  
...  

AbstractSao Tome and Principe is a small insular country in the west coast of Central Africa. The small dimensions of the islands and the limited natural resources put these islands under highly vulnerable to climate change. To assess the possible future impacts and risks on their agricultural activities, the high-resolution 4-km downscaled climate change projections using Eta regional climate model are used. A crop risk index (CRI) is proposed to assess the risk of climate change on cocoa (Theobroma cacaoL.), pepper (Piper nigrumL. andPiper guinesseL.), taro (Colocasia esculenta(L.) Schott), and maize (Zea maysL.). The index takes into account the vulnerability to climate conditions and the crop yield in the future, and it is classified intovery-high,high,moderate,low, andvery-low. The climate change projections indicate increase in the risk of taro crop, partly due to thermal stress and partly due to the susceptibility to the leaf blight crop disease in taro. The risk of production of the pepper crop is very-high, mainly due to water stress. In mountain regions, the greater risk is due to the thermal stress caused by low temperatures. The cocoa crop is at risk due to water stress, mainly in the northwestern part of the Sao Tome Island, where major local production occurs. The projection indicates increase of the area with very-high risk to maize crops due to the increase of thermal stress and susceptibility to rust. In addition, in parts of the coastal regions, the risk changed from very-low to high risk, due to the low productivity potential. In general, the risks of the four major crops of Sao Tome and Principe increase in the future climate conditions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11675
Author(s):  
Nathan Janetzki ◽  
Kirsten Benkendorff ◽  
Peter G. Fairweather

Mobile intertidal gastropods can employ behavioural thermoregulation to mitigate thermal stress, which may include retreating under boulders when emersed. However, little is known about how gastropod occupancy of under-boulder habitats is associated with any variations in substrate temperature that exist under boulders. Thermal imagery was used to measure the temperature of boulder lower surfaces and investigate how three snail species were associated at low tide with the maximum and average temperatures underneath grey siltstone and quartzite. Lower boulder surfaces had heterogeneous temperatures, with grey siltstone having temperature gradients and quartzite temperature showing mosaics. Temperature differences between the hottest and coolest gradient or mosaic locations were >5 °C; thus there was a range of temperatures that snails could interact with. All three snail species occupied cooler parts of temperature mosaics or gradients, avoiding the hottest areas. Stronger associations were detected on the hotter grey siltstone and for the more-thermally sensitive Nerita atramentosa and Diloma concameratum. Even though snails were associated with cooler areas, some individuals were still exposed to extreme substratum heat (>50 °C). These results suggest that gastropod thermoregulatory behaviour is far more complex than simply retreating underneath boulders at low tide, as there is also a range of under-boulder temperatures that they interact with. Untangling interactions between intertidal gastropods and heterogenous substrate temperatures is important given rocky seashores already represent a thermally-variable and potentially-stressful habitat, which may be exacerbated further given predictions of warming temperatures associated with climate change.


2009 ◽  
Vol 407 (15) ◽  
pp. 4506-4512 ◽  
Author(s):  
A. Bonazza ◽  
C. Sabbioni ◽  
P. Messina ◽  
C. Guaraldi ◽  
P. De Nuntiis

Author(s):  
Issam Ifaadassan ◽  
Ahmed Karmaoui ◽  
Mohammed Messouli ◽  
Houssam Ayt Ougougdal ◽  
Mohammed Khebiza Yacoubi ◽  
...  

The argan tree is exclusively endemic in the drylands of Southwest Morocco, an agroecosystem of great ecological, cultural, and economic importance. The argan agroecosystem is already damaged. It is particularly vulnerable to climate change as well as the harsh natural conditions aggravated by the current population growth and the exploitation in excess of the production capacities. Unfortunately, during the 20th century, its area has been reduced by half. Current projections indicate an increase in temperature under climate scenarios. Anticipated climate change could accelerate this trend resulting in the argan tree degradation. To assess the climate change impact, the authors used the SDSM model at the argan agroecosystem scale and the thermal stress model to assess its vulnerability and estimate its tolerance response in relation to temperature stress for a projected climate in the near term (2010-2025 years). In this chapter, the authors explored the impact of climate change on the argan tree regeneration.


Sign in / Sign up

Export Citation Format

Share Document