scholarly journals Review of progress in gathering, distributing and using satellite data for activities within COST 238 (PRIME)

1996 ◽  
Vol 39 (4) ◽  
Author(s):  
I. Kutiev ◽  
S. Stankov

Recent progress in using the satellite data for various PRIME purposes is briefly presented. The satellite data base is already in operation and contains data of local plasma and neutral atmosphere parameters taken from several ionospheric satellites. A method of tracing the locally measured parameters along the magnetic field lines down to hmF2 is developed using a theoretical F-region code. This method is applied to receive f0F2sat needed to test monthly median and instantaneous mapping methods. In order to reduce the uncertainties arising from the unknown photoionization and recombination rates, f0F2 is calibrated at one point on the satellite orbit with a Vertical Incident (VI) f0F2 and their ratio is then assumed constant along the whole satellite track over the PRIME area. The testing procedure for monthly median maps traces the measured plasma density down to a basic height of 400 km, where individual f0F2sat values are accumulated in every time/subarea bin within the given month, then their median is calibrated with the available medians from the VI ionosonde network. From all available satellite orbits over the PRIME area, 35 of them were found to pass over two VI ionosonde stations. The second station in these orbits was used to check the calculated f0F2sat with the measured VI f0F2. The standard deviation was found to be only 0.15 MHz.

Author(s):  
Sung Wook Paek 1 ◽  
Sangtae Kim 2

The development of oceanography and meteorology has greatly benefited from remotely sensed satellite data of the atmosphere and ocean. For oceanographers, meteorologists, hydrologists and climatologists to obtain high-quality satellite data, orbits along which the satellites move must be designed carefully. For this reason, Sun-synchronous, repeat ground track orbits have traditionally been used for visible-wavelength and infrared Earth observations. As the needs for varied datasets are growing, however, new classes of Earth-observing missions are emerging such as interferometry and radiometry to name a few. On the other side, satellite platforms and onboard sensors are getting more compact and less expensive, allowing developing nations to launch their own satellites and under-researched parts of the Earth be studied. In light of these changes, this paper introduces new types of satellite orbits from celestial mechanics perspectives, whose applications will be detailed further in the follow-up work.


GPS Solutions ◽  
2021 ◽  
Vol 25 (4) ◽  
Author(s):  
Bingbing Duan ◽  
Urs Hugentobler

AbstractTo resolve undifferenced GNSS phase ambiguities, dedicated satellite products are needed, such as satellite orbits, clock offsets and biases. The International GNSS Service CNES/CLS analysis center provides satellite (HMW) Hatch-Melbourne-Wübbena bias and dedicated satellite clock products (including satellite phase bias), while the CODE analysis center provides satellite OSB (observable-specific-bias) and integer clock products. The CNES/CLS GPS satellite HMW bias products are determined by the Hatch-Melbourne-Wübbena (HMW) linear combination and aggregate both code (C1W, C2W) and phase (L1W, L2W) biases. By forming the HMW linear combination of CODE OSB corrections on the same signals, we compare CODE satellite HMW biases to those from CNES/CLS. The fractional part of GPS satellite HMW biases from both analysis centers are very close to each other, with a mean Root-Mean-Square (RMS) of differences of 0.01 wide-lane cycles. A direct comparison of satellite narrow-lane biases is not easily possible since satellite narrow-lane biases are correlated with satellite orbit and clock products, as well as with integer wide-lane ambiguities. Moreover, CNES/CLS provides no satellite narrow-lane biases but incorporates them into satellite clock offsets. Therefore, we compute differences of GPS satellite orbits, clock offsets, integer wide-lane ambiguities and narrow-lane biases (only for CODE products) between CODE and CNES/CLS products. The total difference of these terms for each satellite represents the difference of the narrow-lane bias by subtracting certain integer narrow-lane cycles. We call this total difference “narrow-lane” bias difference. We find that 3% of the narrow-lane biases from these two analysis centers during the experimental time period have differences larger than 0.05 narrow-lane cycles. In fact, this is mainly caused by one Block IIA satellite since satellite clock offsets of the IIA satellite cannot be well determined during eclipsing seasons. To show the application of both types of GPS products, we apply them for Sentinel-3 satellite orbit determination. The wide-lane fixing rates using both products are more than 98%, while the narrow-lane fixing rates are more than 95%. Ambiguity-fixed Sentinel-3 satellite orbits show clear improvement over float solutions. RMS of 6-h orbit overlaps improves by about a factor of two. Also, we observe similar improvements by comparing our Sentinel-3 orbit solutions to the external combined products. Standard deviation value of Satellite Laser Ranging residuals is reduced by more than 10% for Sentinel-3A and more than 15% for Sentinel-3B satellite by fixing ambiguities to integer values.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sindolfo Miranda Filho ◽  
Julio Melo ◽  
Luiz Eduardo Leite ◽  
Guido Lemos

Context-aware systems are able to monitor and automatically adapt their operation accordingly to the execution context in which they are introduced. Component-based software engineering (CBSE) focuses on the development and reuse of self-contained software assets in order to achieve better productivity and quality. In order to store and retrieve components, CBSE employs component repository systems to provide components to the system developers. This paper presents an active component repository that is able to receive the current configuration from the context-aware system and compute the components and the new architecture that better fit the given context. Since the repository has a wide knowledge of available components, it can better decide which configuration is more suitable to the running system. The repository applies Fuzzy logic algorithm to evaluate the adequacy level of the components and GRASP algorithm to mount the new system architecture. In order to verify the feasibility of our approach, we use a digital TV middleware case study to achieve experimental results.


2002 ◽  
Vol 20 (12) ◽  
pp. 1977-1985 ◽  
Author(s):  
R. Sridharan ◽  
C. V. Devasia ◽  
N. Jyoti ◽  
Diwakar Tiwari ◽  
K. S. Viswanathan ◽  
...  

Abstract. The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N), India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i) the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii) significant increase in h' F immediately following the eclipse and (iii) distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F) rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities)


Headline INTERNATIONAL: Satellite orbit disputes will increase


2020 ◽  
pp. 1533-1563
Author(s):  
Eduardo C. Contreras ◽  
Gustavo J. Puente

A large part of the population in countries in process of development ignores what Rheumatic Diseases are, and general practitioners are in most cases unaware of enough information to identify them and the treatments to successfully control them. A proposal to help those general practitioners to detect if an articular condition belongs to a Rheumatic Disease case is to present them the clinical semiology that should lead them to redirect the given conditions to a specialist on the subject, a rheumatologist. The clinical semiology is presented by an automated algorithm inside a goal-based software agent, containing all the necessary information to identify the seven most common inflammatory Rheumatic Diseases, and fourteen of the non-inflammatory ones. The purpose of this tool is to provide the general practitioner with the correct information to redirect the patient with a rheumatologist, in order for it to receive the appropriate medication to be controlled.


2020 ◽  
Vol 73 (5) ◽  
pp. 1087-1105
Author(s):  
Yawei Zhai ◽  
Jaymin Patel ◽  
Xingqun Zhan ◽  
Mathieu Joerger ◽  
Boris Pervan

This paper describes a method to determine global navigation satellite systems (GNSS) satellite orbits and clocks for advanced receiver autonomous integrity monitoring (ARAIM). The orbit and clock estimates will be used as a reference truth to monitor signal-in-space integrity parameters of the ARAIM integrity support message (ISM). Unlike publicly available orbit and clock products, which aim to maximise estimation accuracy, a straightforward and transparent approach is employed to facilitate integrity evaluation. The proposed monitor is comprised of a worldwide network of sparsely distributed reference stations and will employ parametric satellite orbit models. Two separate analyses, covariance analysis and model fidelity evaluation, are carried out to assess the impact of measurement errors and orbit model uncertainty on the estimated orbits and clocks, respectively. The results indicate that a standard deviation of 30 cm can be achieved for the estimated orbit/clock error, which is adequate for ISM validation.


2014 ◽  
Vol 721 ◽  
pp. 543-546 ◽  
Author(s):  
Dong Juan Gu ◽  
Lei Xia

Apriori algorithm is the classical algorithm in data mining association rules. Because the Apriori algorithm needs scan database for many times, it runs too slowly. In order to improve the running efficiency, this paper improves the Apriori algorithm based on the Apriori analysis. The improved idea is that it transforms the transaction database into corresponding 0-1 matrix. Whose each vector and subsequent vector does inner product operation to receive support. And comparing with the given minsupport, the rows and columns will be deleted if vector are less than the minsupport, so as to reduce the size of the rating matrix, improve the running speeding. Because the improved algorithm only needs to scan the database once when running, therefore the running speeding is more quickly. The experiment also shows that this improved algorithm is efficient and feasible.


2007 ◽  
Vol 25 (9) ◽  
pp. 1987-1994 ◽  
Author(s):  
A. V. Koustov ◽  
D. André ◽  
E. Turunen ◽  
T. Raito ◽  
S. E. Milan

Abstract. Tomographic estimates of the electron density altitudinal and latitudinal distribution within the Hankasalmi HF radar field of view are used to predict the expected heights of F region coherent echoes by ray tracing and finding ranges of radar wave orthogonality with the Earth magnetic field lines. The predicted ranges of echoes are compared with radar observations concurrent with the tomographic measurements. Only those events are considered for which the electron density distributions were smooth, the band of F region HF echoes existed at ranges 700–1500 km, and there was a reasonable match between the expected and measured slant ranges of echoes. For a data set comprising of 82 events, the typical height of echoes was found to be 275 km.


Author(s):  
Sandeep Vishwakarma ◽  
Aradhana S. Chauhan ◽  
Shoeba Aasma

It is known facts that satellites are used to receive the signal at geostationary orbit by remaining stationary above a particular point on the Earth. The orbit that is chosen for a satellite depends upon its application. Those used for direct broadcast television use geostationary orbit. Many communication satellites similarly use geostationary orbit. Other satellite systems used for satellite phones use Low Earth orbiting systems. Similarly, satellite systems used for navigation like Nav-star or Global Positioning (GPS) system occupy a relatively Low Earth Orbit. There are also many other types of satellites : Weather satellites Research satellites and many others. Each will have its own type of orbit depending upon its application. The actual satellite orbit that is chosen will depend on factors including its function, and the area of serving. At some instances, the satellite orbit may be as low as 100 miles (160 km) for a Low Earth Orbit (LEO), whereas others may be over 22 000 miles (36000 km) high as in the case of a Geostationary Orbit (GEO). The satellite may even has an elliptical rather than a circular orbit.


Sign in / Sign up

Export Citation Format

Share Document