ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF BACTERIAL ANTAGONISTS OF THE DRAGON FRUIT FUNGAL PATHOGEN Neoscytalidium dimidiatum

2021 ◽  
Vol 44 (02) ◽  
Author(s):  
NGUYEN NGOC AN ◽  
HUA HUYNH MINH THAO ◽  
HO NGUYEN HOANG YEN ◽  
NGUYEN THI DIEU HANH ◽  
NGUYEN LE HIEN HOA ◽  
...  

Dragon fruit or pitahaya (Hylocereus spp.) are famous for their nutrient-rich favourable taste, which brings high economic value to subtropical and tropical countries. However, dragon fruit cultivation all over the world is threatened by fungal pathogens and among them, Neoscytalidium dimidiatum has recently been shown to be responsible for stem canker and fruit rot which cause big economic losses. In order to find an environmentally friendly way to control this pathogen, five out of sixty-nine bacterial isolates used in a screening test for antifungal activity were selected. All five strains appeared to be aerobic Gram positive spore forming bacteria suggesting that they all belong to the Bacillus genus. Cell-free culture supernatants of these strains were found to strongly inhibit both fungal spore germination and mycelia growth in vitro for at least 5 days. The strain D19 which possessed the highest antagonistic effect was further identified to be Bacillus amyloliquefaciens, a well-known species shown to have antifungal effect against several other pathogenic fungi. Thus, the results of this study opened a new promising perspective to prevent Neoscytalidium dimidiatum infection during cultivation of dragon fruit.

2019 ◽  
Vol 54 (1) ◽  
pp. 21-35
Author(s):  
Katarína Pastirčáková

Abstract Interactions between 3 pathogenic fungi damaging horse-chestnut (Aesculus hippocastanum) leaves and fruits – Phyllosticta sphaeropsoidea, Phomopsis carposchiza, and Diaporthe padi – and the antagonistic fungus Trichoderma harzianum were studied to determine their mutual influence in vitro. Antibiosis of colonies developing on 5 nutrient media was tested. The 3 studied T. harzianum isolates differed in their antagonistic potential. although T. harzianum isolates significantly inhibited the growth of Phomopsis carposchiza, the mycelium growth of some of the re-isolates on fresh medium indicates an inadequate antagonistic effect of T. harzianum on this species. The tested Trichoderma isolates showed stronger antagonism towards the other pathogens, reflected in overgrowing of Phyllosticta sphaeropso-idea and Diaporthe padi and reducing their growth. Granulation of the cytoplasm and lysis of hyphae of the fungal pathogens were the most frequently observed effects of the interaction.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Erika Anahí Contreras-Leal ◽  
Luis Fernando Corona-Pedraza ◽  
Élida Gastélum-Martínez

Abstract Background Fungi are one of the microorganisms that cause most damage to fruits worldwide, affecting their quality and consumption. Chemical controls with pesticides are used to diminish postharvest losses of fruits. However, biological control with microorganisms or natural compounds is an increasing alternative to protect fruits and vegetables. In this study, the antifungal effect of Streptomyces sp. CACIS-1.5CA on phytopathogenic fungi that cause postharvest tropical fruit rot was investigated. Main body Antagonistic activity was evaluated in vitro by the dual confrontation over fungal isolates obtained from grape, mango, tomato, habanero pepper, papaya, sweet orange, and banana. The results showed that antagonistic activity of the isolate CACIS-1.5CA was similar to the commercial strain Streptomyces lydicus WYEC 108 against the pathogenic fungi Colletotrichum sp., Alternaria sp., Aspergillus sp., Botrytis sp., Rhizoctonia sp., and Rhizopus sp. with percentages ranging from 30 to 63%. The bioactive extract obtained from CACIS-1.5 showed a strong inhibition of fungal spore germination, with percentages ranging from 92 to 100%. Morphological effects as irregular membrane border, deformation, shrinkage, and collapsed conidia were observed on the conidia. Molecularly, the biosynthetic clusters of genes for the polyketide synthase (PKS) type I, PKS type II, and NRPS were detected in the genome of Streptomyces sp. CACIS-1.5CA. Conclusions This study presented a novel Streptomyces strain as a natural alternative to the use of synthetic fungicides or other commercial products having antagonistic microorganisms that were used in the postharvest control of phytopathogenic fungi affecting fruits.


2006 ◽  
Vol 387 (5) ◽  
pp. 549-557 ◽  
Author(s):  
Gregor Langen ◽  
Jafargholi Imani ◽  
Boran Altincicek ◽  
Gernot Kieseritzky ◽  
Karl-Heinz Kogel ◽  
...  

Abstract A cDNA encoding gallerimycin, a novel antifungal peptide from the greater wax moth Galleria mellonella, was isolated from a cDNA library of genes expressed during innate immune response in the caterpillars. Upon ectopic expression of gallerimycin in tobacco, using Agrobacterium tumefaciens as a vector, gallerimycin conferred resistance to the fungal pathogens Erysiphe cichoracearum and Sclerotinia minor. Quantification of gallerimycin mRNA in transgenic tobacco by real-time PCR confirmed transgenic expression under control of the inducible mannopine synthase promoter. Leaf sap and intercellular washing fluid from transgenic tobacco inhibited in vitro germination and growth of the fungal pathogens, demonstrating that gallerimycin is secreted into intercellular spaces. The feasibility of the use of gallerimycin to counteract fungal diseases in crop plants is discussed.


1998 ◽  
Vol 42 (11) ◽  
pp. 2863-2869 ◽  
Author(s):  
E. Herreros ◽  
C. M. Martinez ◽  
M. J. Almela ◽  
M. S. Marriott ◽  
F. Gomez De Las Heras ◽  
...  

ABSTRACT GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans,Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 μg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 μg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 μg/ml, respectively, forC. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. AgainstC. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 μg/ml and 1 and 16 μg/ml, respectively. The MIC90s of GM 222712 and GM 237354 againstCryptococcus neoformans were 0.5 and 0.25 μg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 μg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 μg/ml and 32 and >64 μg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from ≤0.25 to 2 μg/ml. The MICs of GM 237354 against Trichosporon beigelii and the zygomycetesAbsidia corymbifera, Cunninghamella bertholletiae, and Rhizopus arrhizus ranged from ≤0.25 to 8 μg/ml. Against dermatophytes, GM 237354 MICs were ≥2 μg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, includingCandida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.


2018 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Herlyan Prasetiyo ◽  
Purwati Purwati ◽  
Iin Arsensi

Utilization of Trichoderma sp fungi as pathogenic fungi antagonists in red dragon fruit plants (Hylocereus polyrhizus) in vitro. The purpose of this study was to identify foul pathogens of dragon fruit plants and then test the ability of Trichoderma sp antagonists to deciduous pathogens of red dragon fruit plants in vitro. The study was conducted from August to October 2016, The research was conducted at the Laboratory of Pest and Plant Disease Sciences, Faculty of Agriculture, Mulawarman University, Samarinda. Sampling of plants exposed to foul tendrils was carried out in Bukit Merdeka Village, Samboja District, Kutai Kartanegara Regency. There are two data observed in this study, primary data and secondary data. Primary data is data obtained directly from the source through direct field observations and laboratory observations and secondary data data obtained from interviews with farmers. The results showed that the pathogen that causes tendon rot in dragon fruit plants is the fungus Colletotrichum gloesporioides (penz. Ssaac). Trichoderma sp can inhibit the development of pathogens Colletotrichum gloesporioides (Penz.) Ssaac., With the highest average resistance of 71.85%. 


2021 ◽  
Vol 8 ◽  
Author(s):  
Katy Vaillancourt ◽  
Michel Frenette ◽  
Marcelo Gottschalk ◽  
Daniel Grenier

Actinobacillus pleuropneumoniae is the causal agent of porcine pleuropneumonia, a highly contagious and often deadly respiratory disease that causes major economic losses in the swine industry worldwide. The aim of the present study was to investigate the hydrogen peroxide (H2O2)-dependent antagonistic activity of Streptococcus pluranimalium 2N12 (pig nasal isolate) against A. pleuropneumoniae. A fluorimetric assay showed that S. pluranimalium produces H2O2 dose- and time-dependently. The production of H2O2 increased in the presence of exogenous lactate, suggesting the involvement of lactate oxidase. All 20 strains of A. pleuropneumoniae tested, belonging to 18 different serovars, were susceptible to H2O2, with minimal inhibitory concentrations and minimal bactericidal concentrations ranging from 0.57 to 2.3 mM. H2O2, as well as a culture supernatant of S. pluranimalium, killed planktonic cells of A. pleuropneumoniae. Treating the culture supernatant with catalase abolished its bactericidal property. H2O2 was also active against a pre-formed biofilm-like structure of A. pleuropneumoniae albeit to a lesser extent. A checkerboard assay was used to show that there were antibacterial synergistic interactions between H2O2 and conventional antibiotics, more particularly ceftiofur. Based on our results and within the limitations of this in vitro study, the production of H2O2 by S. pluranimalium could be regarded as a potential protective mechanism of the upper respiratory tract against H2O2-sensitive pathogens such as A. pleuropneumoniae.


2010 ◽  
Vol 59 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Ildikó Nyilasi ◽  
Sándor Kocsubé ◽  
Miklós Pesti ◽  
Gyöngyi Lukács ◽  
Tamás Papp ◽  
...  

The in vitro antifungal activities of primycin (PN) and various statins against some opportunistic pathogenic fungi were investigated. PN completely inhibited the growth of Candida albicans (MIC 64 μg ml−1) and Candida glabrata (MIC 32 μg ml−1), and was very effective against Paecilomyces variotii (MIC 2 μg ml−1), but had little effect on Aspergillus fumigatus, Aspergillus flavus or Rhizopus oryzae (MICs >64 μg ml−1). The fungi exhibited different degrees of sensitivity to the statins; fluvastatin (FLV) and simvastatin (SIM) exerted potent antifungal activities against a wide variety of clinically important fungal pathogens. Atorvastatin, rosuvastatin and lovastatin (LOV) had a slight effect against all fungal isolates tested, whereas pravastatin was completely ineffective. The in vitro interactions between PN and the different statins were investigated using a standard chequerboard titration method. When PN was combined with FLV, LOV or SIM, both synergistic and additive effects were observed. The extent of inhibition was higher when these compounds were applied together, and the concentrations of PN and the given statin needed to block fungal growth completely could be decreased by several dilution steps. Similar interactions were observed when the variability of the within-species sensitivities was investigated.


2013 ◽  
Vol 76 (11) ◽  
pp. 1879-1886 ◽  
Author(s):  
WAFA ROUISSI ◽  
LUISA UGOLINI ◽  
CAMILLA MARTINI ◽  
LUCA LAZZERI ◽  
MARTA MARI

The fungicidal effects of secondary metabolites produced by a strain of Penicillium expansum (R82) in culture filtrate and in a double petri dish assay were tested against one isolate each of Botrytis cinerea, Colletotrichum acutatum, and Monilinia laxa and six isolates of P. expansum, revealing inhibitory activity against every pathogen tested. The characterization of volatile organic compounds released by the R82 strain was performed by solid-phase microextraction–gas chromatographic techniques, and several compounds were detected, one of them identified as phenethyl alcohol (PEA). Synthetic PEA, tested in vitro on fungal pathogens, showed strong inhibition at a concentration of 1,230 μg/ml of airspace, and mycelium appeared more sensitive than conidia; nevertheless, at the concentration naturally emitted by the fungus (0.726 ± 0.16 μg/ml), commercial PEA did not show any antifungal activity. Therefore, a combined effect between different volatile organic compounds produced collectively by R82 can be hypothesized. This aspect suggests further investigation into the possibility of exploiting R82 as a nonchemical alternative in the control of some plant pathogenic fungi.


Planta Medica ◽  
2018 ◽  
Vol 84 (18) ◽  
pp. 1355-1362 ◽  
Author(s):  
Xinwei Zhu ◽  
Yu Zhong ◽  
Zihui Xie ◽  
Manlin Wu ◽  
Zhibo Hu ◽  
...  

AbstractTwo novel cyclic hexadepsipeptides, fusarihexin A (1) and fusarihexin B (2), and two known compounds, cyclo-(L-Leu–L-Leu–D-Leu–L-Leu–L-Val) (3) and cyclo-(L-Leu–L-Leu–D-Leu–L-Leu–L-Ile) (4), were isolated from the marine mangrove endophytic fungus Fusarium sp. R5. Their chemical structures were elucidated on the basis of spectroscopic data and Marfeyʼs analysis. In an in vitro bioassay, fusarihexin A (1) remarkably inhibited three plant pathogenic fungi: Colletotrichum gloeosporioides (Penz.) Sacc., which causes anthracnose in many fruits and vegetables, Colletotrichum musae (Berk. and M. A. Curtis) Arx, which causes crown rot and anthracnose in bananas, and Fusarium oxysporum Schlecht. f. sp. lycopersici (Sacc.) W. C. Snyder et H. N. Hansen, which causes Fusarium wilt and fruit rot in tomatoes. Fusarihexin B (2) strongly inhibited C. gloeosporioides and C. musae. The compounds were more potent than carbendazim, which is widely used as an agricultural and horticultural fungicide worldwide.


2005 ◽  
Vol 202 (5) ◽  
pp. 597-606 ◽  
Author(s):  
Antonella Torosantucci ◽  
Carla Bromuro ◽  
Paola Chiani ◽  
Flavia De Bernardis ◽  
Francesco Berti ◽  
...  

To generate a vaccine to protect against a variety of human pathogenic fungi, we conjugated laminarin (Lam), a well-characterized but poorly immunogenic β-glucan preparation from the brown alga Laminaria digitata, with the diphtheria toxoid CRM197, a carrier protein used in some glyco-conjugate bacterial vaccines. This Lam-CRM conjugate proved to be immunogenic and protective as immunoprophylactic vaccine against both systemic and mucosal (vaginal) infections by Candida albicans. Protection probably was mediated by anti-β-glucan antibodies as demonstrated by passive transfer of protection to naive mice by the whole immune serum, the immune vaginal fluid, and the affinity-purified anti-β-glucan IgG fractions, as well as by administration of a β-glucan–directed IgG2b mAb. Passive protection was prevented by adsorption of antibodies on Candida cells or β-glucan particles before transfer. Anti-β-glucan antibodies bound to C. albicans hyphae and inhibited their growth in vitro in the absence of immune-effector cells. Remarkably, Lam-CRM–vaccinated mice also were protected from a lethal challenge with conidia of Aspergillus fumigatus, and their serum also bound to and markedly inhibited the growth of A. fumigatus hyphae. Thus, this novel conjugate vaccine can efficiently immunize and protect against two major fungal pathogens by mechanisms that may include direct antifungal properties of anti-β-glucan antibodies.


Sign in / Sign up

Export Citation Format

Share Document