scholarly journals Cellular Automata for Simulating Molecular Self-Assembly

2003 ◽  
Vol DMTCS Proceedings vol. AB,... (Proceedings) ◽  
Author(s):  
Martin Nilsson ◽  
Steen Rasmussen

International audience We present a lattice gas technique for simulating molecular self-assembly of amphiphilic polymers in aqueous environments. Water molecules, hydrocarbons tail-groups and amphiphilic head-groups are explicitly represented on a three dimensional discrete lattice. Molecules move on the lattice proportional to their continuous momentum. Collision rules preserve momentum and kinetic energy. Potential energy from molecular interactions are also included explicitly. Non-trivial thermodynamics of large scale and long time dynamics are studied. In this paper we specifically demonstrate how, from a random initial distribution, micelles are formed, and grow until they destabilize and divide. Eventually a steady state of growing and dividing micelles is formed.

2005 ◽  
Vol 4 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Martin Nilsson Jacobi ◽  
Steen Rasmussen ◽  
Kolbjørn Tunstrøm

This paper is a discussion on how reaction kinetics and three-dimensional (3D) lattice simulations can be used to elucidate the dynamical properties of micelles as a possible minimal protocell container. We start with a general discussion on the role of molecular self-assembly in prebiotic and contemporary biological systems. A simple reaction kinetic model of a micellation process of amphiphilic molecules in water is then presented and solved analytically. Amphiphilic molecules are polymers with hydrophobic (water-fearing), e.g. hydrocarbon tail groups, and hydrophilic (water-loving) head groups, e.g. fatty acids. By making a few simplifying assumptions an analytical expression for the size distribution of the resulting micelles can be derived. The main part of the paper presents and discusses a lattice gas technique for a more detailed 3D simulation of molecular self-assembly of amphiphilic polymers in aqueous environments. Water molecules, hydrocarbon tail groups and hydrophilic head groups are explicitly represented on a three-dimensional discrete lattice. Molecules move on the lattice proportional to their continuous momentum. Collision rules preserve momentum and kinetic energy. Potential energy from molecular interactions are also included explicitly. The non-trivial thermodynamics of large-scale and long-time dynamics are studied. In this paper we specifically demonstrate how, from a random initial distribution, micelles are formed and grow until they destabilize and can divide. Eventually a steady state of growing and dividing micelles is formed. Towards the end of the paper we discuss the relevance of the presented results to the design of a minimal artificial protocell.


2020 ◽  
Author(s):  
Filip Bošković ◽  
Alexander Ohmann ◽  
Ulrich F. Keyser ◽  
Kaikai Chen

AbstractThree-dimensional (3D) DNA nanostructures built via DNA self-assembly have established recent applications in multiplexed biosensing and storing digital information. However, a key challenge is that 3D DNA structures are not easily copied which is of vital importance for their large-scale production and for access to desired molecules by target-specific amplification. Here, we build 3D DNA structural barcodes and demonstrate the copying and random access of the barcodes from a library of molecules using a modified polymerase chain reaction (PCR). The 3D barcodes were assembled by annealing a single-stranded DNA scaffold with complementary short oligonucleotides containing 3D protrusions at defined locations. DNA nicks in these structures are ligated to facilitate barcode copying using PCR. To randomly access a target from a library of barcodes, we employ a non-complementary end in the DNA construct that serves as a barcode-specific primer template. Readout of the 3D DNA structural barcodes was performed with nanopore measurements. Our study provides a roadmap for convenient production of large quantities of self-assembled 3D DNA nanostructures. In addition, this strategy offers access to specific targets, a crucial capability for multiplexed single-molecule sensing and for DNA data storage.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 739 ◽  
Author(s):  
Hiroki Itasaka ◽  
Ken-Ichi Mimura ◽  
Kazumi Kato

Assembly of nanocrystals into ordered two- or three-dimensional arrays is an essential technology to achieve their application in novel functional devices. Among a variety of assembly techniques, evaporation-induced self-assembly (EISA) is one of the prospective approaches because of its simplicity. Although EISA has shown its potential to form highly ordered nanocrystal arrays, the formation of uniform nanocrystal arrays over large areas remains a challenging subject. Here, we introduce a new EISA method and demonstrate the formation of large-scale highly ordered monolayers of barium titanate (BaTiO3, BT) nanocubes at the air-water interface. In our method, the addition of an extra surfactant to a water surface assists the EISA of BT nanocubes with a size of 15–20 nm into a highly ordered arrangement. We reveal that the compression pressure exerted by the extra surfactant on BT nanocubes during the solvent evaporation is a key factor in the self-assembly in our method. The BT nanocube monolayers transferred to substrates have sizes up to the millimeter scale and a high out-of-plane crystal orientation, containing almost no microcracks and voids.


2016 ◽  
Vol 230 (5-7) ◽  
Author(s):  
Prithvi Raj Pandey ◽  
Prabhu Dhasaiyan ◽  
B. L. V. Prasad ◽  
Sudip Roy

AbstractSophorolipids contain hydrophilic head groups at the ends of a long hydrophobic tail. As a result, sophorolipids can self assemble into variety of structures in water. Atomistic self assembly simulations of sophorolipids are performed in water. Two sophorolipids, oleic acid sophorolipid and linolenic acid sophorolipid, differing in number of double bonds in the hydrophobic tail are considered for this study. Long time self assembly simulations are performed considering 1:3 lipid to water ratio by weight for both oleic and linolenic acid sophorolipids. In addition to 1:3 ratio, long time self assembly simulations are also performed with 1:1 and 1:2 ratios for linolenic acid sophorolipids. Distinctions in structural arrangements of sophorolipid molecules in the self assembled configuration for all the systems are investigated. The present study aims to provide structural insight into the different self assembled configurations of sophorolipids in water.


2017 ◽  
Vol 24 (1) ◽  
pp. 25-29
Author(s):  
Ulrich Veit

I would first like to thank the editors of Archaeological dialogues for inviting me to comment on Kerstin P. Hofmann and Philipp W. Stockhammer's paper on the present situation of archaeological theory in German-speaking prehistoric archaeology (GSA). The message the authors wish to communicate to an international audience is relatively simple and straightforward. GSA, which for a long time seemed ‘generally uninterested in theoretical debates’ (p. 1), has since about the year 2000 radically changed its outlook. This change is seen reflected in a large corpus of theoretically oriented case studies (represented in a list of some four hundred titles added to the paper), that in the eyes of the authors deserves the attention of the international scientific community. This positive development is interpreted as a result both of a growing interest in overarching research questions of cultural studies and of the public funding of large-scale cooperative research projects.


2001 ◽  
Vol 7 (4) ◽  
pp. 329-353 ◽  
Author(s):  
Steen Rasmussen ◽  
Nils A. Baas ◽  
Bernd Mayer ◽  
Martin Nilsson

Complex, robust functionalities can be generated naturally in at least two ways: by the assembly of structures and by the evolution of structures. This work is concerned with spontaneous formation of structures. We define the notion of dynamical hierarchies in natural systems and show the importance of this particular kind of organization for living systems. We then define a framework that enables us to formulate, investigate, and manipulate such dynamical hierarchies. This framework allows us to simultaneously investigate different levels of description together with their interrelationship, which is necessary to understand the nature of dynamical hierarchies. Our framework is then applied to a concrete and very simple formal, physicochemical, dynamical hierarchy involving water and monomers at level one, polymers and water at level two, and micelles (polymer aggregates) and water at level three. Formulating this system as a simple two-dimensional molecular dynamics (MD) lattice gas allows us within one dynamical system to demonstrate the successive emergence of two higher levels (three levels all together) of robust structures with associated properties. Second, we demonstrate how the framework for dynamical hierarchies can be used for realistic (predictive) physicochemical simulation of molecular self-assembly and self-organization processes. We discuss the detailed process of micellation using the three-dimensional MD lattice gas. Finally, from these examples we can infer principles about formal dynamical hierarchies. We present an ansatz for how to generate robust, higher-order emergent properties in formal dynamical systems that is based on a conjecture of a necessary minimal complexity within the fundamental interacting structures once a particular simulation framework is chosen.


Author(s):  
Igor Chueshov

We consider the three-dimensional viscous primitive equations with periodic boundary conditions. These equations arise in the study of ocean dynamics and generate a dynamical system in a Sobolev H1-type space. Our main result establishes the so-called squeezing property in the Ladyzhenskaya form for this system. As a consequence of this property we prove the finiteness of the fractal dimension of the corresponding global attractor, the existence of a finite number of determining modes and the ergodicity of a related random kick model. All these results provide new information concerning the long-time dynamics of oceanic motion.


2020 ◽  
Vol 5 (6) ◽  
pp. 5470-5494
Author(s):  
T. Caraballo ◽  
◽  
A. M. Márquez-Durán ◽  

Author(s):  
Qiuli Wei ◽  
Anaerguli Wufuer ◽  
Meisong Wang ◽  
Yuanyuan Wang ◽  
Liyi Dai

Three-dimensional graphene (3DG) sponge has attracted increasing attention because it combines the unique properties of cellular materials and the excellent performance of graphene. The preparation of 3DG sponge depends mainly on the self-assembly of graphene oxide sheets. Here, we demonstrate facile fabrication of 3DG sponge with a large-scale and ordered porous structure, exploiting the liquid crystals of large graphene oxide (LGO) and ultralarge graphene oxide (ULGO) sheets. The resulting materials exhibit a low density, high porosity and elasticity. Our work explores a new strategy for organizing the ordered alignment of controlled large GO sheets and exploring the relationship between the microstructures and mechanical properties of 3DG sponge.


Sign in / Sign up

Export Citation Format

Share Document