scholarly journals BRST Charge and Poisson Algebras

1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
H. Caprasse

International audience An elementary introduction to the classical version of gauge theories is made. The shortcomings of the usual gauge fixing process are pointed out. They justify the need to replace it by a global symmetry: the BRST symmetry and its associated BRST charge. The main mathematical steps required to construct it are described. The algebra of constraints is, in general, a nonlinear Poisson algebra. In the nonlinear case the computation of the BRST charge by hand is hard. Itis explained how this computation can be made algorithmic. The main features of a recently created BRST computer algebra program are described. It can handle quadratic algebras very easily. Its capability to compute the BRST charge as a formal power series in the generic case of a cubic algebra is illustrated.

2014 ◽  
Vol 29 (30) ◽  
pp. 1450184 ◽  
Author(s):  
Alexander Reshetnyak

A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field–antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang–Mills and gravity theories. The Gribov–Zwanziger action and the refined Gribov–Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.


Author(s):  
Jean Zinn-Justin

Chapter 14 contains a general discussion of the quantization and renormalization of non–Abelian gauge theories. The quantization necessitates gauge fixing and introduces the Faddeev–Popov determinant. Slavnov–Taylor identities for vertex (one–particle–irreducible (1PI)) functions, the basis of a first proof of renormalizability, follow. The Faddeev–Popov determinant leads to a non–local action. A local form is generated by introducing Faddeev–Popov ghost fields. The new local action has an important new symmetry, the BRST symmetry. However, the explicit realization of the symmetry is not stable under renormalization. By contrast, a quadratic equation that is satisfied by the action and generating functional of 1PI functions, the Zinn–Justin equation, is stable and at the basis of a general proof of the renormalizability of non–Abelian gauge theories. The proof involves some simple elements of BRST cohomology. The renormalized form of BRST symmetry then makes it possible to prove gauge independence and unitarity.


2008 ◽  
Vol 20 (09) ◽  
pp. 1033-1172 ◽  
Author(s):  
STEFAN HOLLANDS

We present a proof that the quantum Yang–Mills theory can be consistently defined as a renormalized, perturbative quantum field theory on an arbitrary globally hyperbolic curved, Lorentzian spacetime. To this end, we construct the non-commutative algebra of observables, in the sense of formal power series, as well as a space of corresponding quantum states. The algebra contains all gauge invariant, renormalized, interacting quantum field operators (polynomials in the field strength and its derivatives), and all their relations such as commutation relations or operator product expansion. It can be viewed as a deformation quantization of the Poisson algebra of classical Yang–Mills theory equipped with the Peierls bracket. The algebra is constructed as the cohomology of an auxiliary algebra describing a gauge fixed theory with ghosts and anti-fields. A key technical difficulty is to establish a suitable hierarchy of Ward identities at the renormalized level that ensures conservation of the interacting BRST-current, and that the interacting BRST-charge is nilpotent. The algebra of physical interacting field observables is obtained as the cohomology of this charge. As a consequence of our constructions, we can prove that the operator product expansion closes on the space of gauge invariant operators. Similarly, the renormalization group flow is proved not to leave the space of gauge invariant operators. The key technical tool behind these arguments is a new universal Ward identity that is formulated at the algebraic level, and that is proven to be consistent with a local and covariant renormalization prescription. We also develop a new technique to accomplish this renormalization process, and in particular give a new expression for some of the renormalization constants in terms of cycles.


Author(s):  
Jean Zinn-Justin

The first part of the chapter describes Faddeev–Popov's quantization method, nd the resulting Slavnov–Taylor (ST) identities, in a simple context. This construction automatically implies, after introduction of Faddeev–Popov ‘ghost’ fermions, a Becchi–Rouet–Stora–Tyutin (BRST) symmetry, whose properties are derived. The differential operator, of fermionic type, representing the BRST symmetry, with a proper choice of variables, has the form of a cohomology operator, and a simple form in terms of Grassmann coordinates. The second part of the chapter is devoted to the quantization and renormalization of non-Abelian gauge theories. Quantization of gauge theories require a gauge-fixing procedure. Starting from the non-covariant temporal gauge, and using a simple identity, one shows the equivalence with a quantization in a general class of gauges, including relativistic covariant gauges. Adapting the formalism developed in the first part, ST identities, and the corresponding BRST symmetry are derived. However, the explicit form of the BRST symmetry is not stable under renormalization. The BRST symmetry implies a more general, quadratic master equation, also called Zinn-Justin (ZJ) equation, satisfied by the quantized action, equation in which gauge and BRST symmetries are no longer explicit. By contrast, in the case of renormalizable gauges, the ZJ equation is stable under renormalization, and its solution yields the general form of the renormalized gauge action.


2001 ◽  
Vol 16 (17) ◽  
pp. 2975-3009 ◽  
Author(s):  
C. BIZDADEA ◽  
S. O. SALIU

The Lagrangian Sp(3) BRST symmetry for irreducible gauge theories is constructed in the framework of homological perturbation theory. The canonical generator of this extended symmetry is shown to exist. A gauge-fixing procedure specific to the standard antibracket–antifield formalism, that leads to an effective action, which is invariant under all the three differentials of the Sp(3) algebra, is given.


2012 ◽  
Vol 27 (13) ◽  
pp. 1250067 ◽  
Author(s):  
P. M. LAVROV ◽  
O. V. RADCHENKO ◽  
A. A. RESHETNYAK

We continue investigation of soft breaking of BRST symmetry in the Batalin–Vilkovisky (BV) formalism beyond regularizations like dimensional ones used in our previous paper [JHEP 1110, 043 (2011)]. We generalize a definition of soft breaking of BRST symmetry valid for general gauge theories and arbitrary gauge fixing. The gauge dependence of generating functionals of Green's functions is investigated. It is proved that such introduction of a soft breaking of BRST symmetry into gauge theories leads to inconsistency of the conventional BV formalism.


2017 ◽  
Vol 14 (11) ◽  
pp. 1750168 ◽  
Author(s):  
Amir Abbass Varshovi

It is shown that anti-BRST invariance in quantum gauge theories can be considered as the quantized version of the symmetry of classical gauge theories with respect to different gauge fixing mechanisms.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


1995 ◽  
Vol 10 (35) ◽  
pp. 2687-2694 ◽  
Author(s):  
P.M. LAVROV ◽  
P.YU. MOSHIN ◽  
A.A. RESHETNYAK

Lagrangian quantization rules for general gauge theories are proposed on a basis of a superfield formulation of the standard BRST symmetry. Independence of the S-matrix on a choice of the gauge is proved. The Ward identities in terms of superfields are derived.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


Sign in / Sign up

Export Citation Format

Share Document