scholarly journals A product formula for the TASEP on a ring

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Erik Aas ◽  
Jonas Sjöstrand

International audience For a random permutation sampled from the stationary distribution of the TASEP on a ring, we show that, conditioned on the event that the first entries are strictly larger than the last entries, the $\textit{order}$ of the first entries is independent of the $\textit{order}$ of the last entries. The proof uses multi-line queues as defined by Ferrari and Martin, and the theorem has an enumerative combinatorial interpretation in that setting. Finally, we present a conjecture for the case where the small and large entries are not separated. Pour une permutation randomisée tirée de la mesure stationnaire du TASEP, nous démontrons, conditionnée à l’évènement que les premières lettres sont plus grandes que les dernières lettres, que l’ordre des petites lettres est indépendant de l’ordre des grandes lettres. La preuve utilise les files d’attente multilignes de Ferrari et Martin, et le théorème a une interprétation combinatoire énumérative dans ce contexte. Finalement, nous présentons une conjecture pour le cas où les petits et les grandes lettres ne sont pas séparées.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Olya Mandelshtam

International audience The goal of this paper is to provide a combinatorial expression for the steady state probabilities of the twospecies PASEP. In this model, there are two species of particles, one “heavy” and one “light”, on a one-dimensional finite lattice with open boundaries. Both particles can hop into adjacent holes to the right and left at rates 1 and $q$. Moreover, when the heavy and light particles are adjacent to each other, they can switch places as if the light particle were a hole. Additionally, the heavy particle can hop in and out at the boundary of the lattice. Our first result is a combinatorial interpretation for the stationary distribution at $q=0$ in terms of certain multi-Catalan tableaux. We provide an explicit determinantal formula for the steady state probabilities, as well as some general enumerative results for this case. We also describe a Markov process on these tableaux that projects to the two-species PASEP, and hence directly explains the connection between the two. Finally, we extend our formula for the stationary distribution to the $q=1$ case, using certain two-species alternative tableaux. Le but de ce document est de fournir une expression combinatoire décrivant les probabilités de l’état d’équilibre de PASEP à deux espèces. Dans ce modèle, il existe deux espèces de particules, une “lourde” et une “légère”, disposées sur un réseau fini unidimensionnel. Les deux particules peuvent sauter dans les trous adjacents à droite et à gauche, avec des probabilités proportionnelles à 1 et $q$. Par ailleurs, lorsque les particules lourdes et légères sont à côté l’une de l’autre, elles peuvent changer de place, comme si la particule légère était un trou. En outre, la particule lourde peut sauter dans et hors de la frontière du réseau. Notre premier résultat est une interprétation combinatoire de la distribution stationnaire dans le cas $q=0$, en termes de certains tableaux “multi-Catalan”. Nous proposons une formule explicite déterminantale pour les probabilités stationnaires, ainsi que plusieurs résultats énumératifs généraux pour ce cas. Nous décrivons aussi un processus de Markov sur ces tableaux, qui se projette sur le PASEP à deux espèces, et qui fournit donc directement une connexion entre les deux. Enfin, nous exprimons notre formule pour la distribution stationnaire dans le cas $q=1$, en utilisant certains tableaux alternatifs de deux espèces.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience If $f(x)$ is an invertible power series we may form the symmetric function $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ which is called a formal group law. We give a number of examples of power series $f(x)$ that are ordinary generating functions for combinatorial objects with a recursive structure, each of which is associated with a certain hypergraph. In each case, we show that the corresponding formal group law is the sum of the chromatic symmetric functions of these hypergraphs by finding a combinatorial interpretation for $f^{-1}(x)$. We conjecture that the chromatic symmetric functions arising in this way are Schur-positive. Si $f(x)$ est une série entière inversible, nous pouvons former la fonction symétrique $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ que nous appelons une loi de groupe formel. Nous donnons plusieurs exemples de séries entières $f(x)$ qui sont séries génératrices ordinaires pour des objets combinatoires avec une structure récursive, chacune desquelles est associée à un certain hypergraphe. Dans chaque cas, nous donnons une interprétation combinatoire à $f^{-1}(x)$, ce qui nous permet de montrer que la loi de groupe formel correspondante est la somme des fonctions symétriques chromatiques de ces hypergraphes. Nous conjecturons que les fonctions symétriques chromatiques apparaissant de cette manière sont Schur-positives.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Guillaume Chapuy

International audience Let $\sigma$ be a random permutation chosen uniformly over the symmetric group $\mathfrak{S}_n$. We study a new "process-valued" statistic of $\sigma$, which appears in the domain of computational biology to construct tests of similarity between ordered lists of genes. More precisely, we consider the following "partial sums": $Y^{(n)}_{p,q} = \mathrm{card} \{1 \leq i \leq p : \sigma_i \leq q \}$ for $0 \leq p,q \leq n$. We show that a suitable normalization of $Y^{(n)}$ converges weakly to a bivariate tied down brownian bridge on $[0,1]^2$, i.e. a continuous centered gaussian process $X^{\infty}_{s,t}$ of covariance: $\mathbb{E}[X^{\infty}_{s,t}X^{\infty}_{s',t'}] = (min(s,s')-ss')(min(t,t')-tt')$.


2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Christine Fricker ◽  
Nicolas Gast ◽  
Hanene Mohamed

International audience In the paper, bike sharing systems with stations having a finite capacity are studied as stochastic networks. The inhomogeneity is modeled by clusters. We use a mean field limit to compute the limiting stationary distribution of the number of bikes at the stations. This method is an alternative to analytical methods. It can be used even if a closed form expression for the stationary distribution is out of reach as illustrated on a variant. Both models are compared. A practical conclusion is that avoiding empty or full stations does not improve overall performance.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Robin Langer

International audience Cylindric plane partitions may be thought of as a natural generalization of reverse plane partitions. A generating series for the enumeration of cylindric plane partitions was recently given by Borodin. As in the reverse plane partition case, the right hand side of this identity admits a simple factorization form in terms of the "hook lengths'' of the individual boxes in the underlying shape. The first result of this paper is a new bijective proof of Borodin's identity which makes use of Fomin's growth diagram framework for generalized RSK correspondences. The second result of this paper is a $(q,t)$-analog of Borodin's identity which extends previous work by Okada in the reverse plane partition case. The third result of this paper is an explicit combinatorial interpretation of the Macdonald weight occurring in the $(q,t)$-analog in terms of the non-intersecting lattice path model for cylindric plane partitions. Les partitions planes cylindriques sont une généralisation naturelle des partitions planes renversées. Une série génératrice pour énumération des partitions planes cylindriques a été donnée récemment par Borodin. Comme dans le cas des partitions planes renversées, la partie droite de cette identité peut être factoriser en terme de "longueur d’équerres'' des carrés dans la forme sous-jacente. Le premier résultat de cet article est une nouvelle preuve bijective de l'identité de Borodin qui utilise le cadre de "diagramme de croissance'' de Fomin pour la correspondance de RSK généralisée. Le deuxième résultat de cette article est une $(q,t)$-déformation d'identité de Borodin qui généralise un résultat de Okada dans le cas des partitions planes renversées. Le troisième résultat de cet article est une formule combinatoire explicite pour le poids de Macdonald qui utilise le modèle des chemins non-intersectant pour les partitions planes cylindriques.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Nathanael Berestycki ◽  
Rick Durrett

International audience Our work is motivated by Bourque-Pevzner's simulation study of the effectiveness of the parsimony method in studying genome rearrangement, and leads to a surprising result about the random transposition walk in continuous time on the group of permutations on $n$ elements starting from the identity. Let $D_t$ be the minimum number of transpositions needed to go back to the identity element from the location at time $t$. $D_t$ undergoes a phase transition: for $0 < c ≤ 1$, the distance $D_cn/2 ~ cn/2$, i.e., the distance increases linearly with time; for $c > 1$, $D_cn/2 ~ u(c)n$ where u is an explicit function satisfying $u(x) < x/2$. Moreover we describe the fluctuations of $D_{cn/2}$ about its mean at each of the three stages (subcritical, critical and supercritical). The techniques used involve viewing the cycles in the random permutation as a coagulation-fragmentation process and relating the behavior to the Erdős-Rényi random graph model.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Arnold Knopfmacher ◽  
Helmut Prodinger

International audience For words of length n, generated by independent geometric random variables, we study the average initial and end heights of the first descent in the word. In addition we compute the average initial and end height of the first descent for a random permutation of n letters.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Chris Berg ◽  
Franco Saliola ◽  
Luis Serrano

International audience We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near rectangles'' in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients. Nous montrons que l’opérateur ``down'', défini par Lam et Shimozono sur le groupe de Weyl affine, induit une dérivation de la sous-algèbre affine de Fomin-Stanley de l'algèbre affine de nilCoxeter. Nous employons cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l'expansion des k-fonctions de Schur indexées par les partitions qui sont ``presque rectangles''. Par conséquent, nous obtenons une interprétation combinatoire des k-coefficients de Littlewood–Richardson correspondants.


2016 ◽  
Vol 53 (2) ◽  
pp. 448-462 ◽  
Author(s):  
M. Gannon ◽  
E. Pechersky ◽  
Y. Suhov ◽  
A. Yambartsev

Abstract We propose a class of models of random walks in a random environment where an exact solution can be given for a stationary distribution. The environment is cast in terms of a Jackson/Gordon–Newell network although alternative interpretations are possible. The main tool is the detailed balance equations. The difference compared to earlier works is that the position of the random walk influences the transition intensities of the network environment and vice versa, creating strong correlations. The form of the stationary distribution is closely related to the well-known product formula.


Sign in / Sign up

Export Citation Format

Share Document