scholarly journals On-line ranking of split graphs

2013 ◽  
Vol Vol. 15 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Piotr Borowiecki ◽  
Dariusz Dereniowski

Graphs and Algorithms International audience A vertex ranking of a graph G is an assignment of positive integers (colors) to the vertices of G such that each path connecting two vertices of the same color contains a vertex of a higher color. Our main goal is to find a vertex ranking using as few colors as possible. Considering on-line algorithms for vertex ranking of split graphs, we prove that the worst case ratio of the number of colors used by any on-line ranking algorithm and the number of colors used in an optimal off-line solution may be arbitrarily large. This negative result motivates us to investigate semi on-line algorithms, where a split graph is presented on-line but its clique number is given in advance. We prove that there does not exist a (2-ɛ)-competitive semi on-line algorithm of this type. Finally, a 2-competitive semi on-line algorithm is given.

2012 ◽  
Vol Vol. 14 no. 1 (Distributed Computing and...) ◽  
Author(s):  
Efraim Laksman ◽  
Hakan Lennerstad ◽  
Lars Lundberg

Distributed Computing and Networking International audience For a parallel computer system with m identical computers, we study optimal performance precaution for one possible computer crash. We want to calculate the cost of crash precaution in the case of no crash. We thus define a tolerance level r meaning that we only tolerate that the completion time of a parallel program after a crash is at most a factor r + 1 larger than if we use optimal allocation on m - 1 computers. This is an r-dependent restriction of the set of allocations of a program. Then, what is the worst-case ratio of the optimal r-dependent completion time in the case of no crash and the unrestricted optimal completion time of the same parallel program? We denote the maximal ratio of completion times f(r, m) - i.e., the ratio for worst-case programs. In the paper we establish upper and lower bounds of the worst-case cost function f (r, m) and characterize worst-case programs.


1997 ◽  
Vol 26 (3) ◽  
pp. 870-872 ◽  
Author(s):  
R. Chandrasekaran ◽  
Bo Chen ◽  
Gábor Galambos ◽  
P. R. Narayanan ◽  
André Van Vliet ◽  
...  

1993 ◽  
Vol 22 (2) ◽  
pp. 349-355 ◽  
Author(s):  
Gábor Galambos ◽  
Gerhard J. Woeginger

2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Van Bang Le ◽  
H. N. Ridder

Graphs and Algorithms International audience An undirected graph G=(V,E) is a probe split graph if its vertex set can be partitioned into two sets, N (non-probes) and P (probes) where N is independent and there exists E' ⊆ N× N such that G'=(V,E∪ E') is a split graph. Recently Chang et al. gave an O(V4(V+E)) time recognition algorithm for probe split graphs. In this article we give O(V2+VE) time recognition algorithms and characterisations by forbidden induced subgraphs both for the case when the partition into probes and non-probes is given, and when it is not given.


2018 ◽  
Vol 16 (05) ◽  
pp. 693-715 ◽  
Author(s):  
Erich Novak ◽  
Mario Ullrich ◽  
Henryk Woźniakowski ◽  
Shun Zhang

The standard Sobolev space [Formula: see text], with arbitrary positive integers [Formula: see text] and [Formula: see text] for which [Formula: see text], has the reproducing kernel [Formula: see text] for all [Formula: see text], where [Formula: see text] are components of [Formula: see text]-variate [Formula: see text], and [Formula: see text] with non-negative integers [Formula: see text]. We obtain a more explicit form for the reproducing kernel [Formula: see text] and find a closed form for the kernel [Formula: see text]. Knowing the form of [Formula: see text], we present applications on the best embedding constants between the Sobolev space [Formula: see text] and [Formula: see text], and on strong polynomial tractability of integration with an arbitrary probability density. We prove that the best embedding constants are exponentially small in [Formula: see text], whereas worst case integration errors of algorithms using [Formula: see text] function values are also exponentially small in [Formula: see text] and decay at least like [Formula: see text]. This yields strong polynomial tractability in the worst case setting for the absolute error criterion.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


Sign in / Sign up

Export Citation Format

Share Document