scholarly journals The configuration space of a robotic arm in a tunnel of width 2

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Federico Ardila ◽  
Hanner Bastidas ◽  
Cesar Ceballos ◽  
John Guo

International audience We study the motion of a robotic arm inside a rectangular tunnel of width 2. We prove that the configuration space S of all possible positions of the robot is a CAT(0) cubical complex. Before this work, very few families of robots were known to have CAT(0) configuration spaces. This property allows us to move the arm optimally from one position to another.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Tia Baker ◽  
Rika Yatchak

International audience Given a reconfigurable system $X$, such as a robot moving on a grid or a set of particles traversing a graph without colliding, the possible positions of $X$ naturally form a cubical complex $\mathcal{S}(X)$. When $\mathcal{S}(X)$ is a CAT(0) space, we can explicitly construct the shortest path between any two points, for any of the four most natural metrics: distance, time, number of moves, and number of steps of simultaneous moves. CAT(0) cubical complexes are in correspondence with posets with inconsistent pairs (PIPs), so we can prove that a state complex $\mathcal{S}(X)$ is CAT(0) by identifying the corresponding PIP. We illustrate this very general strategy with one known and one new example: Abrams and Ghrist's ``positive robotic arm" on a square grid, and the robotic arm in a strip. We then use the PIP as a combinatorial ``remote control" to move these robots efficiently from one position to another.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Prashanth Raman ◽  
Chi Zhang

Abstract Stringy canonical forms are a class of integrals that provide α′-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type An and Bn generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite α′, and the configuration space is binary although the u equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type An and Bn integrals, which have perfect u equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.


2020 ◽  
Vol 71 (2) ◽  
pp. 539-555
Author(s):  
Miguel A Maldonado ◽  
Miguel A Xicoténcatl

Abstract The mapping class group $\Gamma ^k(N_g)$ of a non-orientable surface with punctures is studied via classical homotopy theory of configuration spaces. In particular, we obtain a non-orientable version of the Birman exact sequence. In the case of ${\mathbb{R}} \textrm{P}^2$, we analyze the Serre spectral sequence of a fiber bundle $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k \to X_k \to BSO(3)$ where $X_k$ is a $K(\Gamma ^k({\mathbb{R}} \textrm{P}^2),1)$ and $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$ denotes the configuration space of unordered $k$-tuples of distinct points in ${\mathbb{R}} \textrm{P}^2$. As a consequence, we express the mod-2 cohomology of $\Gamma ^k({\mathbb{R}} \textrm{P}^2)$ in terms of that of $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$.


2020 ◽  
pp. 027836492093299
Author(s):  
Anastasiia Varava ◽  
J. Frederico Carvalho ◽  
Danica Kragic ◽  
Florian T. Pokorny

In this work, we propose algorithms to explicitly construct a conservative estimate of the configuration spaces of rigid objects in two and three dimensions. Our approach is able to detect compact path components and narrow passages in configuration space which are important for applications in robotic manipulation and path planning. Moreover, as we demonstrate, they are also applicable to identification of molecular cages in chemistry. Our algorithms are based on a decomposition of the resulting three- and six-dimensional configuration spaces into slices corresponding to a finite sample of fixed orientations in configuration space. We utilize dual diagrams of unions of balls and uniform grids of orientations to approximate the configuration space. Furthermore, we carry out experiments to evaluate the computational efficiency on a set of objects with different geometric features thus demonstrating that our approach is applicable to different object shapes. We investigate the performance of our algorithm by computing increasingly fine-grained approximations of the object’s configuration space. A multithreaded implementation of our approach is shown to result in significant speed improvements.


Author(s):  
YURI G. KONDRATIEV ◽  
TOBIAS KUNA

We develop a combinatorial version of harmonic analysis on configuration spaces over Riemannian manifolds. Our constructions are based on the use of a lifting operator which can be considered as a kind of (combinatorial) Fourier transform in the configuration space analysis. The latter operator gives us a natural lifting of the geometry from the underlying manifold onto the configuration space. Properties of correlation measures for given states (i.e. probability measures) on configuration spaces are studied including a characterization theorem for correlation measures.


1996 ◽  
Vol 11 (05) ◽  
pp. 823-843
Author(s):  
W.D. McGLINN ◽  
L. O’RAIFEARTAIGH ◽  
S. SEN ◽  
R.D. SORKIN

The first and second homology groups, H1 and H2, are computed for configuration spaces of framed three-dimensional point particles with annihilation included, when up to two particles and an antiparticle are present, the types of frames considered being S2 and SO(3). Whereas a recent calculation for two-dimensional particles used the Mayer–Vietoris sequence, in the present work Morse theory is used. By constructing a potential function none of whose critical indices is less than four, we find that (for coefficients in an arbitrary field K) the homology groups H1 and H2 reduce to those of the frame space, S2 or SO(3) as the case may be. In the case of SO(3) frames this result implies that H1 (with coefficients in ℤ2) is generated by the cycle corresponding to a 2π rotation of the frame. (This same cycle is homologous to the exchange loop: the spin-statistics correlation.) It also implies that H2 is trivial, which means that there does not exist a topologically nontrivial Wess–Zumino term for SO(3) frames [in contrast to the two-dimensional case, where SO(2) frames do possess such a term]. In the case of S2 frames (with coefficients in ℝ), we conclude H2=ℝ, the generator being in effect the frame space itself. This implies that for S2 frames there does exist a Wess–Zumino term, as indeed is needed for the possibility of half-integer spin and the corresponding Fermi statistics. Taken together, these results for H1 and H2 imply that our configuration space “admits spin 1/2” for either choice of frame, meaning that the spin-statistics theorem previously proved for this space is not vacuous.


2010 ◽  
Vol 147 (2) ◽  
pp. 649-660 ◽  
Author(s):  
Daniel C. Cohen ◽  
Michael Farber

AbstractThe topological complexity$\mathsf {TC}(X)$is a numerical homotopy invariant of a topological spaceXwhich is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category ofX. Given a mechanical system with configuration spaceX, the invariant$\mathsf {TC}(X)$measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space ofndistinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.


1998 ◽  
Vol 120 (2) ◽  
pp. 181-187 ◽  
Author(s):  
E. Sacks ◽  
L. Joskowicz

This paper presents a contact analysis algorithm for pairs of rigid, curved, planar parts based on configuration space computation. The algorithm is part of a dynamical simulator for planar systems with changing contact topologies. The configuration space of a pair of parts is a data structure that encodes the contact configurations for all pairs of part features. The configuration spaces of the interacting pairs in the mechanical system are constructed before the simulation. At each time step, the simulator queries the configuration spaces for contact changes instead of performing collision detection. The simulator demonstrates the efficacy of the configuration space approach to contact analysis. It achieves real-time performance on systems with complex contact geometry, curved parts, and changing contacts.


1995 ◽  
Vol 09 (09) ◽  
pp. 543-551 ◽  
Author(s):  
H. MAKARUK

In this paper an exact method for determining energy levels of polarons in systems with configuration spaces of the order parameter being the SU(2) group is presented. The base of the method being the evaluation of the spectrum for the Dirac operator on this manifold is shown. Conditions for a substance under which a polaron configuration space is SU(2) are formulated. Satisfaction of these conditions by polyaniline is proved. The representation of the UV-Vis polyaniline spectrum applying the Dirac operator spectrum is given. Applicability of the spectrum to other synthetic metals with SU(2) as the configuration space for the order parameter is discussed.


2000 ◽  
Vol 6 (1) ◽  
pp. 25-43 ◽  
Author(s):  
Max Shpak ◽  
Günter P. Wagner

Evolution can be regarded as the exploration of genetic or morphological state space by populations. In traditional models of population and quantitative genetics, the state space can be formally represented as a configuration space with clearly defined concepts of neighborhood and distance, defined by the action of variational operators such as mutation and/or recombination. In this paper, we describe a process where no genetic configuration space closure (and hence, no non-arbitrary notion of distance and neighborhood) exists. The process is gene duplication by means of unequal crossover, which we regard as an example of an “innovation” process that changes the state space of the system rather than exploring a closed state space. We assert that such processes are qualitatively distinct from representations of the adaptation process, which occur on regular configuration spaces.


Sign in / Sign up

Export Citation Format

Share Document