The Effect of Deprivation on Problem Drinking of Single Person Households : Focusing on the Difference of Life Cycle

2021 ◽  
Vol 45 (3) ◽  
pp. 117-182
Author(s):  
Taeyeon Kwon
2018 ◽  
Vol 6 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Jungmok Ma

Abstract Proper modeling of the usage phase in Life Cycle Assessment (LCA) is not only critical due to its high impact among life cycle phases but also challenging due to high variations and uncertainty. Furthermore, when multiple products can be utilized, the optimal product usage should be considered together. The robust optimal usage modeling is proposed in this paper as the framework of usage modeling for LCA with consideration of the uncertainty and optimal usage. The proposed method seeks to optimal product usage in order to minimize the environmental impact of the usage phase under uncertainty. Numerical examples demonstrate the application of the robust optimal usage modeling and the difference from the previous approaches. Highlights The robust optimal usage modeling is proposed for the usage modeling of LCA. The proposed model seeks to sustainable product usage under uncertainty. Numerical examples demonstrate the difference from the previous approaches.


Author(s):  
Khujayev Munis ◽  

In the usual sense, ideology is not a science, although it includes scientific knowledge. The difference between ideology and science lies in the fact that it includes not only scientific knowledge and knowledge about socio-political life, but also an assessment of current events, trends, processes and various forces of this socio-political life. Strictly speaking, ideology does not exist in isolation from socio-political, national, economic, class and other communities and groups. It arises with them, forms and changes as their life cycle progresses, reflecting the interests of groups united by a given ideology.


Energy Policy ◽  
2020 ◽  
Vol 143 ◽  
pp. 111586 ◽  
Author(s):  
Julia Offermann-van Heek ◽  
Katrin Arning ◽  
André Sternberg ◽  
André Bardow ◽  
Martina Ziefle

1985 ◽  
Vol 117 (4) ◽  
pp. 481-493 ◽  
Author(s):  
J.R. Byers ◽  
D.L. Struble ◽  
J.D. Lafontaine

AbstractThe species previously recognized as Euxoa ridingsiana (Grt.) is shown to be composed of a sympatric pair of sibling species, Euxoa ridingsiana (Grt.) and Euxoa maimes (Sm.), which in the laboratory will produce viable F1 hybrids but no F2. Results of F1 sib and backcrosses show that the F1 males are fertile and the F1 females are infertile. In mating-bias tests conducted in laboratory cages, 74% of matings were conspecific and 26% interspecific. Differences in the diel periodicities of mating, which are about 2 h out of phase, may account for the mating bias. The duration of development of E. ridingsiana in the laboratory and its seasonal flight period in the field are about 2 weeks in advance of that of E. maimes. However, there is considerable overlap of the flight periods and, with the tendency of females of both species to mate several times, it is unlikely that the difference in seasonal emergence is enough to effect reproductive isolation. It is evident that, under natural conditions, reproductive isolation can be maintained entirely by species-specific sex pheromones. This mechanism of reproductive isolation is, however, apparently ineffective when moths are confined in cages in the laboratory.Biogeographic considerations suggest that the differences in life-cycle timing and mating periodicities might have been adaptations to adjust development and reproduction to prevailing ancestral environments. If the initial differentiation of the 2 species occurred in isolation and included at least an incipient shift in the pheromonal mate-recognition system, it is possible that upon reestablishment of contact between ancestral populations the differences in life-cycle timing and mating periodicities acting in concert could have effected substantial, albeit incomplete, reproductive isolation. Subsequent selection to reinforce assortative mating to preserve coadapted gene complexes could then have resulted in differentiation of discrete pheromonal systems and attainment of species status.


2014 ◽  
Vol 129 (3) ◽  
pp. 1035-1084 ◽  
Author(s):  
Chang-Tai Hsieh ◽  
Peter J. Klenow

Abstract In the United States, the average 40-year-old plant employs more than seven times as many workers as the typical plant 5 years or younger. In contrast, surviving plants in India and Mexico exhibit much slower growth, roughly doubling in size over the same age range. The divergence in plant dynamics suggests lower investments by Indian and Mexican plants in process efficiency, quality, and in accessing markets at home and abroad. In simple general equilibrium models, we find that the difference in life cycle dynamics could lower aggregate manufacturing productivity on the order of 25 percent in India and Mexico relative to the United States.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4437
Author(s):  
Thomas Betten ◽  
Shivenes Shammugam ◽  
Roberta Graf

With an increasing share of renewable energy technologies in our energy systems, the integration of not only direct emission (from the use phase), but also the total life cycle emissions (including emissions during resource extraction, production, etc.) becomes more important in order to draw meaningful conclusions from Energy Systems Analysis (ESA). While the benefit of integrating Life Cycle Assessment (LCA) into ESA is acknowledged, methodologically sound integration lacks resonance in practice, partly because the dimension of the implications is not yet fully understood. This study proposes an easy-to-implement procedure for the integration of LCA results in ESA based on existing theoretical approaches. The need for a methodologically sound integration, including the avoidance of double counting of emissions, is demonstrated on the use case of Passivated Emitter and Rear Cell photovoltaic technology. The difference in Global Warming Potential of 19% between direct and LCA based emissions shows the significance for the integration of the total emissions into energy systems analysis and the potential double counting of 75% of the life cycle emissions for the use case supports the need for avoidance of double counting.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 160 ◽  
Author(s):  
Mohammad Heidari ◽  
Damien Mathis ◽  
Pierre Blanchet ◽  
Ben Amor

Research Highlights: This is the first study that analyzes the environmental performance of wood-based phase change material (PCM) panels. Background and Objectives: Life cycle assessment (LCA) is a powerful environmental management tool. However, a full LCA, especially during the early design phase of a product, is far too time and data intensive for industrial companies to conduct during their production and consumption processes. Therefore, there is an increasing demand for simpler methods to demonstrate a company’s resource efficiency potential without being data or time intensive. The goal of this study is to investigate the suitability of streamlined LCA (SLCA) tools and methods used in the building material industry, and to assess their robustness in the case study of a wood-based PCM panel. Materials and Methods: The Bilan Produit tool was selected as the SLCA tool and a matrix LCA was selected as the most commonly used SLCA method. A specific case study of a wood-based PCM panel was selected with a focus on its application in building construction in the province of Québec. Results: As a semi-quantitative LCA method, the matrix LCA provided a quick screening of the product life cycle and its hotspot stages, i.e., life cycle stages with high impact. However, the results of the full LCA and SLCA tools were quantitative and based on scientific databases. The use of the PCM panel and heating energy had the highest environmental impacts as compared to other inputs. The results of the full LCA and SLCA also identified energy consumption as a hotspot. Insufficient material or processes in the SLCA databases was one of the reasons for the difference between the results of the SLCA and full LCA. Conclusions: The examined SLCA methods provided proper explanations for the bio-based material in construction, but several limitations still exist, and the methods should be improved to make them more robust when implemented in such a specific sector.


Sign in / Sign up

Export Citation Format

Share Document