scholarly journals The Physicochemical Characteristic of Activated Carbon Based on Sludge and Preparation Method

Author(s):  
H. Lu ◽  
F. Luo ◽  
Q. Zhang ◽  
J. Li ◽  
L. Cai

To understand the features and best preparation of sludge activated carbon (SAC), and the pore structure, component, adsorption characteristics, and the yield rate of SAC, many tests have been carried out. The study illustrated that the pore structure was mostly mesopore and amorphous pore such as the ink bottle hole. In terms of different preparations to obtain SAC, the yield of SAC in sample No.1 achieved 88.09%. Using the preparation of ZnCl2 as an activator, the iodine adsorption value was significantly higher than other preparations. However, the content of quartz in sample No.1 achieved a maximum of 52.51%. Charcoal was detected in all samples except sample nos 9-12. The adsorption capacity of Cu(II) and Cd(II) reached a maximum of 600.02 mg.kg-1 and 383.2 mg.kg-1. The results showed an optimum preparation condition, which was by using the ZnCl2 as an activator, 2:1 as the impregnated ratio, 40% concentration in activator and at 400ºC reaction temperature could create rich pore structure and charcoal inside.

2021 ◽  
Vol 43 (7) ◽  
pp. 537-546
Author(s):  
Heejong Son ◽  
Sangki Choi ◽  
Byungryul An ◽  
Hyejin Lee ◽  
Hoon-Sik Yoom

Objectives : The purpose of this study was to evaluate the effect of increasing the number of regeneration of granular activated carbon (GAC) on the adsorption capacity of natural organic matter (NOM), and to suggest the technical process options associated the limit number of regeneration and the efficient use of regenerated GAC.Methods : The physicochemical properties of virgin and thermally regenerated GAC were analyzed. To evaluate the NOM adsorption capacity of virgin- and regenerated-GAC, five laboratory-scale columns packed with virgin- and regenerated-GAC were used for treating effluent from pilot-scale drinking water treatment facility. The NOM concentration in the influent and the effluent treated by each column was analyzed by LC-OCD (liquid chromatography-organic carbon detector) to evaluate the adsorption capacity of each NOM fractions (humic substances (HS), building blocks (BB), low molecular weight organics (LMWs)).Results and Discussion : Due to the change in the pore structure of GAC by thermal regeneration, the volume of micropores (< 2 nm) decreased, while the volume of mesopores (> 2 nm) increased. The volume ratio of micropore in virgin-GAC was about 60%, but it gradually decreased as the number of regenerations increased, resulting that the volume ratio of micropore in the 5th-regenerated (5th-Re) GAC decreased to 23%. On the other hand, the volume ratio of mesopore increased in proportion to the number of regenerations from 40% of the virgin GAC to 77% of the 5th-Re-GAC. The DOC adsorption capacities of the regenerated GACs were higher than that of virgin GAC, and the DOC adsorption capacity increased as the number of regenerations increased. As a result of comparing the adsorption capacity of virgin- and regenerated-GAC by NOM fractions, the adsorption capacity of high molecular weight NOM, such as HS, increased by 1.5 to 1.7 times as the number of regenerations increased. In contrast, the adsorption capacity of low molecular weight NOM, such as BB and LMWs, decreased by 78% and 48% as the number of regeneration increased. The limit number of regeneration was evaluated based on that the adsorption capacity (qe) of each NOM fractions keep over than 70% relative to its virgin GAC. As a result, the adsorption capacity for low molecular weight NOM was greatly reduced in GAC regenerated over than 3rd time, so that the 2nd-Re-GAC was valid to keep 70% removal of whole NOM fractions. Low adsorption of low molecular weight NOM (BB and LMWs) by 3rd-Re-GAC could be complemented by using together with virgin-GAC, and low adsorption of high molecular NOMs (HS) could be compensated as well.Conclusions : Due to the change in the pore structure of GAC by thermal regeneration, the DOC adsorption capacity was higher in regenerated GAC than its virgin-GAC, and the adsorption capacity of DOC and high molecular weight NOM (HS) was enhanced as the number of regenerations increased. On the other hand, the pore volume of micropore was reduced by regenerations, and in more than 3rd times regenerations, the adsorption capacity of low molecular weight NOMs (BB and LMWs) was reduced by less than 70% compared to its virgin GAC, so that 2nd-Re-GAC was suggested for suitable GAC. When using a mixture of virgin- and 3rd-Re-GAC, low adsorption of low molecular weight NOM (BB and LMWs) by 3rd-Re-GAC could be complemented by using together with virgin-GAC, and low adsorption of high molecular NOMs (HS) could be compensated as well.


2016 ◽  
Vol 10 (1) ◽  
pp. 24-35
Author(s):  
Haspiadi Haspiadi

Solid waste of Palm kernel cake (PKC) is a by product of oil extraction from palm nut pose a serious environmental problem in some factories of Palm Kernel Oil (PKO. Thererfore the research about utilization of palm kernel cake solid waste (PKC) as a source of activated carbon was performed. From this research is to know quality of activated carbon using palm kernel cake as a row material to compare with the SNI 06-3730-1995. The process was carried out is chemical activation method with in laboratory scale using two types activator, which is phosphoric acid and potassium hydroxide at six different concentration 2%, 4%, 6%, 8%, 10% and 12% respectively. Whereas, carbonization was held at temperature of 400oC during 120 minutes. The result indicated that the quality of activated carbon according to key parameters using  the lowest concentration of  activator fulfilling with SNI 06-3730-1995 was produced by H3PO4 6%  with iodine adsorption capacity 769 mg/g. Meanwhile for activator KOH 10% according to key parameters using  the lowest concentration of  activator fulfilling with SNI 06-3730-1995 was produced by with condition of iodine adsorption capacity 778 mg/gABSTAKLimbah padat palm kernel cake (PKC) yang dihasilkan dari proses ekstraksi kernel merupakan permasalahan lingkungan yang serius dibeberapa industri yang mengolah Palm Kernel Oil (PKO). Oleh karena itu dilakukan penelitian untuk memanfaatkan limbah padat Palm Kernel Cake (PKC) sebagai sumber karbon aktif. Diharapkan dari penelitian ini dapat diketahui mutu karbon aktif yang dihasilkan dibandingkan dengan SNI 06 3730-1995. Proses pengolahan yang dilakukan secara kimia dalam skala laboratorium, menggunakan dua jenis aktivator yaitu H3PO4 dan KOH dengan konsentrasi 2%, 4%, 6%, 8%, 10% dan 12%. Karbonisasi dilakukan pada suhu 400 oC selama 120 menit. Hasil uji mutu karbon aktif yang dihasilkan berdasarkan parameter kunci dengan pertimbangan penggunaan bahan kimia dengan konsentrasi aktivator terkecil menunjukkan bahwa pengggunaan aktivator 6% H3PO4  memiliki daya serap terhadap iod sebesar (I2) 769 mg/g, bila dibandingkan dengan SNI 06 3730-1995 telah dapat memenuhi syarat mutu. Sedangkan penggunaan aktivator KOH 10%  dengan pertimbangan penggunaan bahan kimia dengan konsentrasi aktivator terkecil memiliki daya serap terhadap iod sebesar 778 mg/g. Kata kunci :  asam fosfat, kalium hidroksida, karbon aktif, limbah padat, daya serap iod, palm kernel cake


2013 ◽  
Vol 712-715 ◽  
pp. 527-530
Author(s):  
Jing Wen Xue

Corncob xylitol residue was soaked with H3PO4 for 16h and carbonized in microwave for 9min to obtain activated carbon. Methylene blue and iodine adsorption values were determined and were 119.92mg/g and 839.47mg/g, respectively. The adsorption property on Cr6+ was determined and the proper adsorption condition was pH2, 30min, 80°C. The maximum Cr adsorption capacity was 50mg/g.


Author(s):  
Suthatip SINYOUNG ◽  
Weerawut CHAIWAT ◽  
Kittipong KUNCHARIYAKUN

This research focuses on the utilization of bagasse as activated carbon (AC) under microwave-assisted phosphoric acid activation. The AC was activated using various frequencies of microwave energy combined with phosphoric acid before the carbonization process. Results indicated that the AC obtained from bagasse under microwave-assisted phosphoric acid had improved properties, i.e. fixed carbon, surface area, and iodine adsorption capacity. However, the loss of AC properties could be attributed to microwave energy exceeding a limit of 800 W. The optimum activated condition in this research was the use of microwave energy 500 W assisted phosphoric acid, which had fixed carbon, surface area, and iodine adsorption capacity at 88.34 ± 0.67 %, 781 m2/g, and 852 ± 6.0 mg/g, respectively. HIGHLIGHTS Microwave energy and phosphoric acid is applied to pretreat bagasse Bagasse pretreatment by microwave-assisted H3PO4 enhances the properties of AC Optimum condition is pretreatment by phosphoric acid and microwave energy at 500 W GRAPHICAL ABSTRACT


1989 ◽  
Vol 21 (1) ◽  
pp. 141-143 ◽  
Author(s):  
I. Dobrevski ◽  
L. Zvezdova

This paper reports the results of investigations into the effect of activated carbon pore structure on the process of carbon regeneration. The suitability of several different commercial activated carbons for biological regeneration was investigated. The pore volume, pore radii, and surface area of the carbons were determined by mercury intrusion and BET methods. The adsorption capacities of the carbons were measured in completely mixed batch reactor systems. Heterogeneous micro-organism cultures and crude cell extract were used for bioregeneration of the carbons. The comparative adsorption and bioregeneration studies showed that there was no correlation between the original adsorption capacity and the regenerated adsorption capacity of activated carbons under the range of conditions used. This is due to the pore structure characteristics of the carbons. It has been found that the regenerated adsorption capacity depends on the volume of the pores with radii, r, of 5 - 50 nm (50 - 500 Å). On the basis of substrate bio-oxidation reactions and the results obtained from identification of some exo-enzymes involved in this bio-oxidation process, the probable mechanism of bioregeneration is discussed.


2009 ◽  
Vol 79-82 ◽  
pp. 39-42 ◽  
Author(s):  
Bing Nan Ren

Carbon materials have a very large surface area and various surface functional groups. They have been widely used as the adsorbent alone or the modified surface to adsorb pollutants. In the process of producing of yellow phosphorus by electric furnace, about 3000 m3 tail gas will be let out for one ton yellow phosphorus production. Tail gases consist of 90% of carbon monoxide (CO) and phosphine (PH3). The PH3 prevents the highly efficient utilization of CO and is an irritant and general systemic poison. Therefore, it is necessary to study how to effectively remove PH3 in tail gases. Due to the fact that selective adsorption of non-modified activated carbon (AC) is not enough to remove PH3 with a high efficiency, modification of AC might be an attractive route to improve the adsorption capacity. In this paper, experiments were carried out to study the factors influencing the adsorption of PH3 on the modified AC such as the concentration of impregnant, reaction temperature, oxygen content and space velocity. The results showed that the 5% HCl was the optimum concentration of impregnant. In the presence of oxygen, the adsorption capacity of modified AC was more than that in the absence of oxygen. In addition, with the improvement of the reaction temperature, the adsorption capacity of modified AC was increasing initially then decreasing, because of the transition from physical adsorption to chemical adsorption as priority. The adsorption capacity of the modified AC was enhanced initially with the increasing of oxygen content. Once the oxygen content was enhanced over 1%, there was no significant increase in the adsorption capacity of modified AC. The adsorption capacity of modified AC was decreased with the increasing of space velocity. The optimum parameters of reaction were 5% HCl of impregnant, 70°C of reaction temperature, 1% of oxygen content, and space velocity 10~20min-1.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-279-Pr3-286
Author(s):  
X. Dabou ◽  
P. Samaras ◽  
G. P. Sakellaropoulos

2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Sign in / Sign up

Export Citation Format

Share Document