scholarly journals Cell Death Induction Potential in Seed Extracts- Hidden and Bioactive Phytochemical Treasures

Author(s):  
R. Rajasekaran ◽  
P. K. Suresh

Seeds have been known to possess bioactive components with anti-cancer properties. This study aims to demonstrate the processes by which seed extracts from various sources induce cell death. Several assays have been employed to demonstrate the induction of cell death by the respective seed extracts. This review also underscores the importance of Grape Seed Proanthocyanidins (GSPs) in terms of inducing the aforesaid physiological form of seed extract-induced cell death. Furthermore, this review highlights the critical and pressing need to conduct comparative HTS-based strategies (with a battery of cell lines representing different cancers) to identify the major seed extracts that can reproducibly serve to augment the cell death induction capabilities of the existing battery of chemotherapeutic drugs/natural alternatives.

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Kourt Chatelain ◽  
Spencer Phippen ◽  
Jonathan McCabe ◽  
Christopher A. Teeters ◽  
Susan O'Malley ◽  
...  

Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.


2021 ◽  
Vol 22 (8) ◽  
pp. 3956
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Hae June Lee ◽  
Kiwon Song

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


2020 ◽  
Author(s):  
zhichao xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets were detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6–cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. Methods: We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response–related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. Results: In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro . Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo , as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro . Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo . This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. Conclusions: Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1414 ◽  
Author(s):  
Young-Jun Jeon ◽  
Sanghee Kim ◽  
Ji Hee Kim ◽  
Ui Joung Youn ◽  
Sung-Suk Suh

Hepatocellular carcinoma (HCC) is one of the most deadly genetic diseases, but surprisingly chemotherapeutic approaches against HCC are only limited to a few targets. In particular, considering the difficulty of a chemotherapeutic drug development in terms of cost and time enforces searching for surrogates to minimize effort and maximize efficiency in anti-cancer therapy. In spite of the report that approximately one thousand lichen-derived metabolites have been isolated, the knowledge about their functions and consequences in cancer development is relatively limited. Moreover, one of the major second metabolites from lichens, Atranorin has never been studied in HCC. Regarding this, we comprehensively analyze the effect of Atranorin by employing representative HCC cell lines and experimental approaches. Cell proliferation and cell cycle analysis using the compound consistently show the inhibitory effects of Atranorin. Moreover, cell death determination using Annexin-V and (Propidium Iodide) PI staining suggests that it induces cell death through necrosis. Lastly, the metastatic potential of HCC cell lines is significantly inhibited by the drug. Taken these together, we claim a novel functional finding that Atranorin comprehensively suppresses HCC tumorigenesis and metastatic potential, which could provide an important basis for anti-cancer therapeutics.


2008 ◽  
Vol 6 (12) ◽  
pp. 151
Author(s):  
J. Strovel ◽  
T. Lawrence ◽  
P. Natarajan ◽  
J.M. Hamilton ◽  
D.K. Bol

2020 ◽  
Vol 21 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Nurhanan M. Yunos ◽  
Asiah Osman ◽  
Muhammad H. Jauri ◽  
Nor J. Sallehudin ◽  
Siti Syarifah Mohd Mutalip

Background: 17βH-neriifolin, a cardiac glycoside compound had been successfully isolated from Cerbera odollam leaves based on the bioassay guided-isolation procedure. The aim of these studies were to determine the in vitro anti-cancer and binding effects of 17βH-neriifolin on Na+, K+-ATPase. Methods: The in vitro anti-cancer effects were evaluated using Sulphorhodamine B and Hoescht 33342 assays. The Na+, K+-ATPase assay was carried out using Malachite Green assay. In silico molecular docking studies and in vitro malachite green assay were used to predict the binding activities of 17βH-neriifolin on Na+, K+-ATPase and ouabain was also included as for comparison studies. Results: The compound was tested against breast (MCF-7, T47D), colorectal (HT-29), ovarian (A2780, SKOV-3) and skin (A375) cancer cell lines that gave IC50 values ranged from 0.022 ± 0.0015 to 0.030 ± 0.0018 μM. The mechanism of cell death of 17βH-neriifolin was further evaluated using Hoescht 33342 assay and it was found that the compound killed the cancer cells via apoptosis. 17βHneriifolin and ouabain both bound at α-subunit in Na+, K+-ATPase and their binding energy were - 8.16 ± 0.74 kcal/mol and -8.18 ± 0.48 kcal/mol respectively. Conclusion: The results had confirmed the anti-proliferative effects exerted by 17βH-neriifolin in the breast, colorectal, ovarian and skin cancer cell lines. 17βH-neriifolin had shown to cause apoptotic cell death in the respective cancer cell lines.17βH-neriifolin and ouabain both bound at α-subunit in Na+, K+-ATPase and their binding energy were -8.16 ± 0.74 kcal/mol and -8.18 ± 0.48 kcal/mol respectively. This is the first report to reveal that 17βH-neriifolin managed to bind to the pocket of α-subunit of Na+.K+-ATPase.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4930-4930
Author(s):  
Junya Kuroda ◽  
Mio Yamamoto ◽  
Hisao Nagoshi ◽  
Tsutomu Kobayashi ◽  
Nasa Sasaki ◽  
...  

Abstract Abstract 4930 Tyrosine kinase inhibitors (TKIs) against Bcr-Abl fusion oncoprotein, such as imatinib mesylate (IM), nilotinib, or dasatinib, are the first-line molecular targeted therapeutics for chronic myelogenous leukemia (CML). However, the resistance to Bcr-Abl TKIs is induced in leukemic cells not only by loss of sensitivity to TKIs through Bcr-Abl-related molecular mechanisms, such as the acquisition of Abl mutation or the overexpression of Bcr-Abl, but also by loss of addiction to Bcr-Abl TK activity by acquiring Bcr-Abl-unrelated additional oncogenic mutations. Therefore, a new treatment approach that induces an anti-leukemic effect via Bcr-Abl-unrelated molecular pathways is urgently needed for achievement of a complete cure and to overcome TKI resistance. Galectins are a family of animal lectins that show specific affinity for beta-galactosides. Among fourteen mammalian galectins, galectin-9 (Gal9) has been shown to possess the anti-cancer properties by regulating various cellular functions, such as cell adhesion, cell proliferation, or apoptosis. These prompted us to investigate whether Gal9 can have an anti-CML effect via signaling cascades distinct from the pathway utilized by Bcr-Abl TKIs or by other commonly utilized anti-cancer agents. Modified human Galectin-9 (hGal9) inhibits the proliferation of six CML-derived cell lines, BV173, KT-1, KCL22, K562, KBM5 and MYL, by inducing apoptosis at their IC50s from 17.5 to 164.9 nM, with the activation of caspases-3, -4, - 8 and -9. The addition of 25 mM lactose prevented the growth inhibitory effect by hGal9 in K562, indicating the essential role of beta-galactoside binding activity in the anti-CML activity of hGal9. Because hGal9 treatment caused upregulation of Noxa, a pro-apoptotic BH3-only protein of Bcl-2 family proteins, and Mcl-1, a member of anti-apoptotic Bcl-2 proteins, in CML cell lines, we next investigated the involvement of Bcl-2-regulated apoptosis pathway in cell death by hGal9. K562 sublines overexpressing Bcl-2, Bcl-XL, or Mcl-1, showed resistance to cell death induced by IM, but were as sensitive to hGal9-induced cell death as the parental cells, suggesting the involvement of a pathway which is independent of Bcl-2 family proteins. These results also indicate that the accumulation of Mcl-1 following hGal9 treatment does not hamper apoptotic induction by hGal9. Besides, the expression of dominant-negative FADD protein did not hamper the effect of hGal9, also indicating that the death receptor pathway was not responsible for apoptosis induced by hGal9. In contrast, our study revealed that hGal9 caused the upregulation of activating transcription factor 3 (ATF3), a member of the ATF/CREB family transcription factors, within 3 hour treatment, and the gene knockdown experiments using RNA interference (RNAi) technique revealed that ATF3 is the critical mediator for cell killing by hGal9. Moreover, RNAi experiments indicated that Noxa is one of the downstream effector molecules of ATF3, and that Noxa partly mediates cell death induction by hGal9. Bim, on the other hand, the BH3-only protein essential for apoptosis by Bcr-Abl TKIs, was not associated with hGal9-induced cell death. Considering that the activation of caspase-4 and caspase-8 is involved in ER stress-induced apoptosis, and that Noxa induction by ATF3 has been shown to be crucial in the cell death induced by inhibitors for ER-associated protein degradation, we suggest that hGal9-induced cell death may at least partly involve ER stress. ATF3-mediated cell death by hGal9 was not hampered by the absence of p53, the presence of mutant AblT315I, or by P-glycoprotein overexpression. In addition, hGal9 showed the additive growth inhibitory effect with IM on CML cell lines. Collectively, hGal9 is a candidate agent that may overcome various kinds of resistance to treatment for CML, and suggest that ATF3 may be a new target molecule for the development of new treatment modalities that can overcome resistance to currently available chemotherapeutics. Disclosures: No relevant conflicts of interest to declare.


1998 ◽  
Vol 16 ◽  
pp. S77
Author(s):  
Leopold Eckhart ◽  
Michael Mildner ◽  
Erwin Tschachler

2013 ◽  
Vol 57 (7) ◽  
pp. 1170-1181 ◽  
Author(s):  
Virginie Aires ◽  
Emeric Limagne ◽  
Alexia K. Cotte ◽  
Norbert Latruffe ◽  
François Ghiringhelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document