scholarly journals Evaluation of Normalization Techniques on Neural Networks for the Prediction of 305-Day Milk Yield

Author(s):  
Asli AKILLI ◽  
Hulya ATIL

In this study, the impact of data preprocessing on the prediction of 305-day milk yield using neural networks were investigated with regard to the effect of different normalization techniques. Eight normalization techniques “Z-Score, Min-Max, D-Min-Max, Median, Sigmoid, Decimal Scaling, Median and MAD, TanhEstimators" and five different back propagation algorithms “Levenberg-Marquardt (LM), Bayesian Regularization (BR), Scaled Conjugate Gradient (SCG), Conjugate Gradient Back propagation with Powell-Beale Restarts (CGB) and Brayde Fletcher Gold Farlo Shanno Quasi Newton Back propagation (BFG)” were examined and tested comparatively for the analysis. Neural network architecture was optimized and tested with several experiments. Results of the analysis show that applying different normalization techniques affect the performance and the distribution of outputs influences the learning process of the neural network. The magnitude of the effects varied with the type of back propagation algorithms, activation functions, and network's architectural structure. According to the results of the analysis, the most successful performance value in the 305-day milk yield estimation was obtained by using the neural network structured by using the Decimal Scaling normalization technique with the Bayesian Regulation algorithm (R2Adj = 0.8181, RMSE= 0.0068, MAPE= 160.42 for test set; R2Adj =0.8141, RMSE= 0.0067, MAPE= 114.12 for validation set).

2021 ◽  
pp. 10-17
Author(s):  
S. S. Yudachev ◽  
N. A. Gordienko ◽  
F. M. Bosy

The article describes an algorithm for the synthesis of neural networks for controlling the gyrostabilizer. The neural network acts as an observer of the state vector. The role of such an observer is to provide feedback to the gyrostabilizer, which is illustrated in the article. Gyrostabilizer is a gyroscopic device designed to stabilize individual objects or devices, as well as to determine the angular deviations of objects. Gyrostabilizer systems will be more widely used, as they provide an effective means of motion control with a number of significant advantages for various designs. The article deals in detail with the issue of specific stage features of classical algorithms: selecting the network architecture, training the neural network, and verifying the results of feedback control. In recent years, neural networks have become an increasingly powerful tool in scientific computing. The universal approximation theorem states that a neural network can be constructed to approximate any given continuous function with the required accuracy. The back propagation algorithm also allows effectively optimizing the parameters when training a neural network. Due to the use of graphics processors, it is possible to perform efficient calculations for scientific and engineering tasks. The article presents the optimal configuration of the neural network, such as the depth of memory, the number of layers and neurons in these layers, as well as the functions of the activation layer. In addition, it provides data on dynamic systems to improve neural network training. An optimal training scheme is also provided.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Author(s):  
Dr. Gauri Ghule , Et. al.

Number of hidden neurons is necessary constant for tuning the neural network to achieve superior performance. These parameters are set manually through experimentation. The performance of the network is evaluated repeatedly to choose the best input parameters.Random selection of hidden neurons may cause underfitting or overfitting of the network. We propose a novel fuzzy controller for finding the optimal value of hidden neurons automatically. The hybrid classifier helps to design competent neural network architecture, eliminating manual intervention for setting the input parameters. The effectiveness of tuning the number of hidden neurons automatically on the convergence of a back-propagation neural network, is verified on speech data. The experimental outcomes demonstrate that the proposed Neuro-Fuzzy classifier can be viably utilized for speech recognition with maximum classification accuracy.


Author(s):  
Revathy Jayaseelan ◽  
Gajalskshmi Pandulu ◽  
Ashwini G

This paper presents the prediction of fresh concrete properties and compressive strength of flowable concrete through neural network approach. A comprehensive data set was generated from the experiments performed in the laboratory under standard conditions. The flowable concrete was made with two different types of micro particles and with single nano particles. The input parameter was chosen for the neural network model as cement, fine aggregate, coarse aggregate, superplasticizer, water-cement ratio, micro aluminium oxide particles, micro titanium oxide particles, and nano silica. The output parameter includes the slump Flow, L-Box flow, V Funnel flow and compressive strength of the flowable concrete. To develop a suitable neural network model, several training algorithms were used such as BFGS Quasi- Newton back propagation, Fletcher-Powell conjugate gradient back propagation, Polak - Ribiere conjugate gradient back propagation, Gradient descent with adaptive linear back propagation and Levenberg-Marquardt back propagation. It was found that BFGS Quasi- Newton back propagation and Levenberg-Marquardt back propagation algorithm provides more than 90% on the prediction accuracy. Hence, the model performance was agreeable for prediction purposes for the fresh properties and compressive strength of flowable concrete.


2020 ◽  
Vol 4 (4) ◽  
pp. 655-663
Author(s):  
Crisanadenta Wintang Kencana ◽  
Erwin Budi Setiawan ◽  
Isman Kurniawan

Social media is one of the ways to connect every individual in the world. It also used by irresponsible people to spread a hoax. Hoax is false news that is made as if it is true. It may cause anxiety and panic in society. It can affect the social and political conditions. This era, the most popular social media is Twitter. It is a place for sharing information and users around the world can share and receive news in short messages or called tweet. Hoax detection gained significant interest in the last decade. Existing hoax detection methods are based on either news-content or social-context using user-based features. In this study, we present a hoax detection based on FF & BP neural networks. In the developing of it, we used two vectorization methods, TF-IDF and Word2Vec. Our model is designed to automatically learn features for hoax news classification through several hidden layers built into the neural network.  The neural network is actually using the ability of the human brain that is able to provide stimulation, process, and output. It works by the neuron to process every information that enters, then is processed through a network connection, and will continue learning to produce abilities to do classification. Our proposed model would be helpful to provide a better solution for hoax detection. Data collection obtained through crawling used Twitter API and retrieve data according to the keywords and hashtags. The neural networks highest accuracy obtained using TF-IDF by 78.76%. We also found that data quality affects the performance.


In this paper we will identify a cry signals of infants and the explanation behind the screams below 0-6 months of segment age. Detection of baby cry signals is essential for the pre-processing of various applications involving crial analysis for baby caregivers, such as emotion detection. Since cry signals hold baby well-being information and can be understood to an extent by experienced parents and experts. We train and validate the neural network architecture for baby cry detection and also test the fastAI with the neural network. Trained neural networks will provide a model and this model can predict the reason behind the cry sound. Only the cry sounds are recognized, and alert the user automatically. Created a web application by responding and detecting different emotions including hunger, tired, discomfort, bellypain.


Author(s):  
Mihaela Dumitrescu

The possibility of applying artificial neural networks in different areas determined the discovery of more complex structures. This chapter describes the characteristic aspects of using a back-propagation neural network algorithm in making financial forecasting improved by a different technology: genetic algorithms. These can help build an automatic artificial neural network by two adaptive processes: first, genetic search through the data entry window, the forecast horizon, network architecture space, and control parameters to select the best performers; second, back propagation learning in individual networks to evaluate the selected architectures. Thus, network performance population increases from generation to generation. This chapter also presents how genetic algorithms can be used both to find the best network architecture and to find the right combination of inputs, the best prediction horizon and the most effective weight. Finally, this study shows how the results obtained using these technologies can be applied to obtain decision support systems that can lead to increased performance in economic activity and financial projections.


2020 ◽  
Vol 9 (2) ◽  
pp. 285
Author(s):  
Putu Wahyu Tirta Guna ◽  
Luh Arida Ayu Ayu Rahning Putri

Not many people know that endek cloth itself has 4 known variances. .Nowadays. Computing and classification algorithm can be implemented to solve classification problem with respect to the features data as input. We can use this computing power to digitalize these endek pattern. The features extraction algorithm used in this research is GLCM. Where these data will act as input for the neural network model later. There is a lot of optimizer algorithm to use in back propagation phase. In this research we  prefer to use adam which is one of the newest and most popular optimizer algorithm. To compare its performace we also use SGD which is older and popular optimizer algorithm. Later we find that adam algorithm generate 33% accuracy which is better than what SGD algorithm give, it is 23% accuracy. Longer epoch also give affect for overall model accuracy.


2000 ◽  
Vol 12 (6) ◽  
pp. 706-711
Author(s):  
Toru Fujinaka ◽  
◽  
Hirofumi Nakano ◽  
Michifumi Yoshioka ◽  
Sigeru Omatu

A method for controlling the tightening operation of bolts using an impact wrench is proposed, where the neural network is employed for achieving proper clamping force. The characteristics of the clamping force depend on the kind of work to which bolts are tightened, thus a neural network is used for classification of the work. The clamping force, which can only be measured during the test run, is estimated online, using another neural network. Then appropriate input to the actuator of the impact wrench is determined, based on the estimated value of the clamping force.


Author(s):  
William C. Carpenter ◽  
Margery E. Hoffman

AbstractThis paper examines the architecture of back-propagation neural networks used as approximators by addressing the interrelationship between the number of training pairs and the number of input, output, and hidden layer nodes required for a good approximation. It concentrates on nets with an input layer, one hidden layer, and one output layer. It shows that many of the currently proposed schemes for selecting network architecture for such nets are deficient. It demonstrates in numerous examples that overdetermined neural networks tend to give good approximations over a region of interest, while underdetermined networks give approximations which can satisfy the training pairs but may give poor approximations over that region of interest. A scheme is presented that adjusts the number of hidden layer nodes in a neural network so as to give an overdetermined approximation. The advantages and disadvantages of using multiple output nodes are discussed. Guidelines for selecting the number of output nodes are presented.


Sign in / Sign up

Export Citation Format

Share Document