scholarly journals Energy Recovery by Production of Electricity from Anaerobic Digestion of Organic Waste in the Saharan Environment

Author(s):  
Ahmed TAHRI ◽  
◽  
Slimane KALLOUM ◽  

Anaerobic digestion is a natural process of transforming organic matter into energy by methanogenic bacteria. This process is performed in the digesters in the absence of oxygen, they produce biogas composed mainly of methane (CH4) which is a combustible natural gas we can used in everyday life. In this work, we produced biogas using a continuous digester with a capacity of 4m3 and after the biogas purification; we used methane produced to run the generator to produce electricity. The results are very encouraging, where we have to produce electricity and cover the daily needs of the Algerian individual in electricity using 1m3 of biogas from our digester

2002 ◽  
Vol 45 (12) ◽  
pp. 113-118 ◽  
Author(s):  
T. Komatsu ◽  
T. Kimura ◽  
Y. Kuriyama ◽  
Y. Isshiki ◽  
T. Kawano ◽  
...  

Recycling of Municipal Solid Waste is vigorously promoted in Japan and the necessity of energy recovery from organic waste is increasing. An anaerobic digestion demonstration plant for organic waste in Kyoto City, Japan has been operated for about two years. Three kinds of wastes (garbage and leftovers from hotels, yard waste and used paper) mixed at various ratios are used. The plant has maintained stable operations with each mixture, generating biogas by the decomposition of VS at the rate of about 820 m3N/ton-VS.


2020 ◽  
Vol 96 (10) ◽  
Author(s):  
Francesca Bandini ◽  
Chiara Misci ◽  
Eren Taskin ◽  
Pier Sandro Cocconcelli ◽  
Edoardo Puglisi

ABSTRACT The development of biopolymers has raised issues about their recalcitrance in the environment. Their disposal is mainly carried out with the organic fraction of municipal solid waste (OFMSW) through thermophilic anaerobic digestion and aerobic composting, bioprocesses aimed at turning organic matter into biogas and compost. However, the effects of biopolymers on OFMSW treatment, on the final compost and on the microbial communities involved are partly unexplored. In this study, the OFMSW treatment was reproduced on a laboratory-scale respecting real plant conditions and testing the impacts of mixing polylactic acid (PLA) and starch-based bioplastic (SBB) separately. The dynamics of bacterial, archaeal and fungal communities during the process was screened by high-throughput sequencing (HTS) of phylogenetic amplicons. Starch-based bioplastic showed a minor and heterogeneous microbial diversity between the anaerobic and aerobic phases. Contrariwise, PLA treatment resulted in wider and more diverse bacterial and fungal communities for the compost and the aerobic biofilm. Since the biodiversity in compost may play a crucial role in its stability and safety, the modulation of environmental microbial communities induced by higher concentrations of PLA in OFMSW treatment can pose relevant issues.


2020 ◽  
Vol 81 (6) ◽  
pp. 1319-1328 ◽  
Author(s):  
Katie Baransi-Karkaby ◽  
Mahdi Hassanin ◽  
Sharihan Muhsein ◽  
Nedal Massalha ◽  
Isam Sabbah

Abstract Biogas, which typically consists of about 50–70% of methane gas, is produced by anaerobic digestion of organic waste and wastewater. Biogas is considered an important energy resource with much potential; however, its application is low due to its low quality. In this regard, upgrading it to natural gas quality (above 90% methane) will broaden its application. In this research, a novel ex-situ immobilized biomethanation bioreactor (IBBR) was developed for biologically upgrading biogas by reducing CO2 to CH4 using hydrogen gas as an electron donor. The developed process is based on immobilized microorganisms within a polymeric matrix enabling the application of high recirculation to increase the hydrogen bioavailability. This generates an increase in the consumption rate of hydrogen and the production rate of methane. This process was successfully demonstrated at laboratory-scale system, where the developed process led to a production of 80–89% methane with consumption of more than 93% of the fed hydrogen. However, a lower methane content was achieved in the bench-scale system, likely as a result of lower hydrogen consumption (63–90%). To conclude, the IBBRs show promising results with a potential for simple and effective biogas upgrading.


2021 ◽  
Vol 24 (1) ◽  
pp. 8-13
Author(s):  
Darwin ◽  
Atmadian Pratama ◽  
Mardhotillah

AbstractAnaerobic co-digestion of oil palm empty fruit bunches with cow manure was studied. The research focus was on the evaluation of feeding different solid concentrations of the substrate in the on-going process of anaerobic digestion. The solid concentrations ranged from 0.5 to 12% TS. Results of the study showed that the maximum methane production could be reached with the reactor digesting substrates with 4 to 8% TS, in which the methane produced was from 1300 to 1400 mL per day. A significant drop of pH from 7.02 to 5.97 occurred when the reactor was digesting substrates with 10 and 12% TS. Acidic condition caused by organic matter overloads lowered the efficiency of organic conversion represented in the low removal of COD, which was only 22.4%. This finding is highly significant for the waste management industries in terms of dealing with the digester upset due to the digestion of large amount of organic wastes.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Jose Aurelio Sosa Olivier ◽  
Jose Ramon Laines Canepa

Anaerobic digestion is a technology used in the degradation of organic waste, with the possibility of obtaining products such as biogas and digestates, which have significant nutrient concentrations. However, using them without any prior treatment can cause various problems, due to the presence of unstabilized organic matter and excessive concentrations of nutrients reaching phytotoxic levels, as well as water and air contamination. Therefore, in this work, we present a refining process of solid digestates from a biodigester fed with sheep feces, by means of vermicomposting, in combination with plant waste, and using earthworms of the species E. andrei and E. fetida. The digestate values at the end of the vermicomposting showed to be within optimal ranges of electrical conductivity, with values ≤4 dS/m. The pH values were between 5,39 and 7. The percentage of organic matter was between 20 and 50%. It could be proven that the refining process increased the concentration of K for groups F 50:50, F 75:25, and A 75:25, with a value of P = 0,0001. Treatments with E. fetida showed the highest concentrations (g/L) of N = 2,71 ± 1,10, P = 0,89 ± 0,69 and K = 4,01 ± 1,57. The importance of giving added value to the products generated during anaerobic digestion processes contributes to better yields and quality in their use and commercialization.


2021 ◽  
Vol 16 (2) ◽  
pp. 84-94
Author(s):  
Fahmi Arifan ◽  
Abdullah Abdullah ◽  
Siswo Sumardiono

Organic waste has high COD and BOD content, so it is dangerous if disposed of directly into the environment. Organic waste processing, such as waste from livestock manure and liquid tofu waste, requires a process that can reduce COD and BOD levels as well as produce valuable products. Anaerobic digestion method is the proper process to convert complex compounds in waste into simpler compounds with methanogenic bacteria into a renewable energy product, namely biogas. On the other hand, the anaerobic digestion process can reduce COD and BOD levels in the biogas formation process. This study uses raw materials such as cow manure and chicken manure, and liquid tofu waste. The variables that produced the largest biogas were those with a ratio of 70% cow dung, 15% chicken manure, and 15% tofu liquid waste with a total of 3,251.5 mL. Then, the COD and BOD levels decreased significantly with more than 98% COD removal, and more than 95% BOD removal in all variables at the end of the anaerobic digestion process.


2001 ◽  
Vol 78 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Katrin Vorkamp ◽  
Reimer Herrmann ◽  
Thorkild Hvitved-Jacobsen

2021 ◽  
Vol 2139 (1) ◽  
pp. 012009
Author(s):  
J M Sanchez-Beltrán ◽  
J C Acevedo-Páez ◽  
F Moreno Gamboa

Abstract The present research aims to evaluate the physicochemical variables involved in the anaerobic digestion process to produce methane from manure on an agricultural farm; the farm has 2 equines that generate 12 Kg of manure per day. A manure sample was collected, and the following physicochemical parameters were determined: total solids, volatile solids, chemical oxygen demand, and pH. A tubular household biodigester was then implemented, consisting mainly of a polyethylene geomembrane that stores the organic matter and in which anaerobic digestion takes place. The performance of the biodigester was determined by the removal of organic matter quantified by volatile solids and chemical oxygen demand in the biodigester influent and digestate, of which removal of 82% of volatile solids and 74% of chemical oxygen demand was achieved. The average biogas production was 0.5 m3/day, and its lower heating value was 26,000 kJ/m3. The pH level of the biodigester was within the range of 6-7, in order to keep the methanogenic bacteria active, in charge of carrying out physicochemical process that guarantees anaerobic digestion and thus, the production of biogas.


2012 ◽  
Vol 48 (1) ◽  
pp. 23-27
Author(s):  
TOMONAO MIYASHIRO ◽  
QINGHONG WANG ◽  
YINGNAN YANG ◽  
KAZUYA SHIMIZU ◽  
NORIO SUGIURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document