scholarly journals A Composite Textual Phenomenological Approach to CUREs versus Traditional Laboratory Experiences

Author(s):  
Amie Sommers ◽  
Dana Richter-Egger ◽  
Christine Cutucache

Here we present unique perspectives from undergraduate students (n=3) in STEM who have taken both a traditional laboratory iteration and a Course-based Undergraduate Research Experience (CURE) iteration of the same introductory chemistry course. CUREs can be effective models for integrating research in courses and fostering student learning gains. Via phenomenological interviews, we asked students to describe the differences in their perspectives, feelings, and experiences between a traditional lab guided by a lab manual and a CURE. We found that (i.) critical thinking/problem solving, (ii.) group work/collaboration, (iii.) student-led research questions and activities, and (iv.) time management are the top four emergent themes associated with the CURE course. Students also indicated that they learned more disciplinary content in the CURE, and, importantly, that they prefer it over the traditional lab. These findings add another dimension of success to CUREs in STEM education, particularly surrounding student retention.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaye D. Ceyhan ◽  
John W. Tillotson

Abstract Background Prior research reported that motivational beliefs that individuals attach to specific tasks predict continuing interest and persistence in the task. A motivational approach may be particularly useful for understanding undergraduate students’ engagement with research in their first and second years in college. The current study utilizes the expectancy-value theory of achievement motivation to qualitatively explore how much and in what ways early year undergraduate researchers value their research experience and what kinds of costs they associate with it. Results The results revealed that intrinsic value had the highest expression in participants’ motivation to engage in research. The second most expressed value type was the utility value of undergraduate research with regards to obtaining the desired outcomes, and attainment value played the least important role in participants’ motivation to engage in research. Findings also indicated that some of the participants associated a cost(s) to their research experience. The highest mentioned perceived cost was opportunity cost, where participants commented on losing other valued alternatives when engaging in research. Participants commented on the time, effort, or amount of work needed to engage in research, and a few participants commented on the emotional cost associated with their research experience in terms of the fear of failure. Conclusion As perceived cost is the least studied in the expectancy-value framework, this study contributes to cost values within college students, particularly about early year undergraduate researchers. The findings of this study can form the basis for future work on exploring ways to increase the values and decrease the costs students experience in their undergraduate research experiences.


2019 ◽  
Vol 9 (4) ◽  
pp. 259 ◽  
Author(s):  
Lillywhite ◽  
Wolbring

Research experience is beneficial for undergraduate students for many reasons. For example, it is argued in academic literature and in reports produced by various organizations that engage with science, technology, engineering and math (STEM) education and science education that undergraduate research experience increases the graduation rate in STEM disciplines as well as the amount of students thinking about STEM careers. As such, being researchers should also be of benefit to undergraduate disabled students in all disciplines including STEM education. However, given that undergraduate disabled students encounter many problems within post-secondary education, including STEM education, undergraduate disabled students might encounter problems in becoming researchers. Policies are to be guided by knowledge and evidence. However, knowledge and evidence deficits exist in relation to the lived experience of disabled people. Undergraduate disabled students could decrease the knowledge deficit as researchers and knowledge producers. The numbers of disabled academic faculty are judged as being too low and efforts are under way to increase the number of disabled academics. Increasing the number of undergraduate disabled researchers might increase the available pool of disabled students that pursue an academic career. Given the important role research performed by undergraduate disabled students can play and given that many studies highlight problems for disabled students in post-secondary education in general, we used a scoping review approach to investigate the coverage of undergraduate disabled students as knowledge producers, including as researchers, in the academic literature. Using various search strategies, we obtained 1299 initial hits. However, only 15 had relevant content. No study investigated how undergraduate disabled students select their research topics or how they are enticed to pursue research projects outside of a course-based framework. No study looked at the linkage between being an undergraduate disabled researcher and career choices or using the obtained research skills on the undergraduate level in one’s role as a community member after graduation. Our findings suggest an opportunity for many fields, ranging from disability studies to STEM education, to generate more empirical data and conceptual work on the role of undergraduate disabled students as knowledge producers including as researchers. Such studies could help to increase the numbers of undergraduate disabled students as knowledge producers, including researchers, which in turn could help to increase (a) the number of disabled academics, (b) the number of disabled students who perform research in the community after graduation, (c) the degree success of disabled students and (d) the knowledge available on the social situation of disabled people.


Author(s):  
Janet Y. Tsai ◽  
Daria Kotys-Schwartz ◽  
Beverly Louie ◽  
Virginia Ferguson ◽  
Alyssa Berg

At the University of Colorado Boulder (CU), a research-based undergraduate mentoring program is now in its second year of implementation. The program, Your Own Undergraduate Research Experience (YOU’RE@CU) has three main goals: improve the retention rate of diverse groups in undergraduate engineering, build undergraduate interest in engineering research, and prepare graduate students to take on leadership roles in either academia or industry-based research careers. In YOU’RE@CU, undergraduate students are paired with a graduate mentor and work in the graduate student’s lab several hours a week. Undergraduate mentees enroll in a one-credit seminar course focusing on research and graduate school opportunities, and are assessed via pre- and post-surveys to gauge their excitement and interest in engineering. The undergraduates also respond to biweekly qualitative reflective questions while participating in the program. Graduate mentors complete several reflective questions about their experiences and are required to complete pre- and post-assessments. Adopting a person-centered, case study approach, this paper focuses on two telling examples of research-based mentoring relationships in the YOU’RE@CU program. Given identical mentor training through YOU’RE@CU, two graduate students start the Spring 2012 semester by meeting with their mentees to launch a research project. By examining application, pre-survey, reflective questions, and post-survey responses from these four participants, the differences in the trajectory of the two paired mentoring relationships can be clearly seen over the course of one semester. This close examination of two disparate mentoring relationships is instructive in understanding the subtle details that create either a positive learning environment or an uncomfortable lab situation for young engineers, and assists program administrators in making improvements in subsequent years.


2020 ◽  
Vol 11 ◽  
Author(s):  
Evelyn Sun ◽  
Marcia L. Graves ◽  
David C. Oliver

The University of British Columbia has developed a course-based undergraduate research experience (CURE) that engages students in authentic molecular microbiology research. This capstone course is uniquely built around an open-access online undergraduate research journal entitled Undergraduate Journal of Experimental Microbiology and Immunology (UJEMI). Students work in teams to derive an original research question, formulate a testable hypothesis, draft a research proposal, carry out experiments in the laboratory, and publish their results in UJEMI. The CURE operates in a feed forward manner whereby student-authored UJEMI publications drive research questions in subsequent terms of the course. Progress toward submission of an original manuscript is scaffolded using a series of communication assignments which facilitate formative development. We present a periodic model of our CURE that guides students through a research cycle. We review two ongoing course-based projects to highlight how UJEMI publications prime new research questions in the course. A journal-driven CURE represents a broadly applicable pedagogical tool that immerses students in the process of doing science.


2020 ◽  
Vol 4 (1) ◽  
pp. 77-78
Author(s):  
Christopher Fuse ◽  
◽  
Ashley Cannaday ◽  
Whitney Coyle ◽  
◽  
...  

Due to the COVID-19 pandemic, the authors, who have expertise in acoustics, optics, and astrophysics, decided to pivot from the experimental components of their research and focus instead on computational studies. Many of their usual research practices were adapted, creating new techniques to optimize the remote research experience for their undergraduate students.


Author(s):  
Holly E. Bates ◽  
Shanna Lowes ◽  
Sarah L. West

Undergraduate research experiences are important for the development of scientific identity, appreciation of authentic research, and to improve persistence towards science careers. We identified a gap in experiential research opportunities for undergraduate Biology students who were seeking a formal yet small-scale research experience that was unique to their own interests and career aspirations. These opportunities may be especially worthwhile for STEM students aspiring to non-research scientific careers (i.e., medicine, dentistry, forensics, communication) and underrepresented STEM students. Here, we reflect on the use of small-scale, individualized undergraduate research experiences that are based on established methods (MURE). These experiences have helped to fill this gap and create problem-centred learning opportunities for undergraduate students that are as unique as the students themselves.


FACETS ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 818-829 ◽  
Author(s):  
Nora J. Casson ◽  
Colin J. Whitfield ◽  
Helen M. Baulch ◽  
Sheryl Mills ◽  
Rebecca L. North ◽  
...  

Engagement of undergraduate students in research has been demonstrated to correlate with improved academic performance and retention. Research experience confers many benefits on participants, particularly foundational skills necessary for graduate school and careers in scientific disciplines. Undergraduate curricula often do not adequately develop collaborative skills that are becoming increasingly useful in many workplaces and research settings. Here, we describe a pilot program that engages undergraduates in research and incorporates learning objectives designed to develop and enhance collaborative techniques and skills in team science that are not typical outcomes of the undergraduate research experience. We conducted a collaborative science project that engaged faculty advisors and upper year undergraduates at four institutions and conducted a review to assess the program’s efficacy. Students developed a broad suite of competencies related to collaborative science, above and beyond the experience of completing individual projects. This model also affords distinct advantages to faculty advisors, including the capacity of the network to collect and synthesize data from different regions. The model for training students to conduct collaborative science at an early stage of their career is scalable and adaptable to a wide range of fields. We provide recommendations for refining and implementing this model in other contexts.


2014 ◽  
Vol 42 (1) ◽  
pp. 129-147 ◽  
Author(s):  
Jeffrey A. Knapp ◽  
Nicholas J. Rowland ◽  
Eric P. Charles

Purpose – The purpose of this paper is to identify an important area for librarians to positively impact student retention. Design/methodology/approach – This programmatic and conceptual piece describes how embedding librarians into the growing enterprise of undergraduate research experiences (UREs) lays a framework for a context in which libraries and librarians directly contribute to the retention of undergraduate students. Findings – Librarians are capable of directly contributing to the retention of students. While their efforts, it is contended, contribute routinely and to the actual retention of students, it is difficult for their efforts to register in the assessment of retention used by administrators. This discrepancy can be solved if librarians play a more explicit (and quantifiable) role in retaining students. Research limitations/implications – UREs are a growing, but generally untapped trend for librarians; however, because UREs generally correlate with academic success and student retention, they offer librarians a useful entry point to contribute to the academic mission of colleges and universities, and in a measurable way. Practical implications – Embedded librarianship poses a number of hurdles for its practitioners; however, it also has the potential for libraries and librarians to become more explicitly connected to overall institutional goals and strengthen their positions in the academy more broadly. Social implications – Improving the scientific literacy of undergraduate students and aiding them on their path toward graduation is meaningfully enhanced through the embedding of librarians into the college curriculum. Originality/value – Systematically embedding librarians into UREs is not strongly represented in the literature.


1986 ◽  
Vol 13 (3) ◽  
pp. 119-122 ◽  
Author(s):  
Neil Lutsky

A method for involving large numbers of introductory psychology students as active researchers is described and evaluated. Students are assigned a project requiring them to develop research questions and to answer those questions by means of a computerized analysis of previously collected data. Results of a study of the project's effects on attitudes toward research in psychology indicate that students reported valuing research more, understanding statistical procedures better, and feeling less anxious about statistics and computers. These and other findings are taken to suggest that this assignment may be an effective way to introduce introductory students to research activities and values in psychology.


2021 ◽  
Vol 11 (1) ◽  
pp. 1-23
Author(s):  
Cory J Evans ◽  
John M Olson ◽  
Bama Charan Mondal ◽  
Pratyush Kandimalla ◽  
Ariano Abbasi ◽  
...  

Abstract Undergraduate students participating in the UCLA Undergraduate Research Consortium for Functional Genomics (URCFG) have conducted a two-phased screen using RNA interference (RNAi) in combination with fluorescent reporter proteins to identify genes important for hematopoiesis in Drosophila. This screen disrupted the function of approximately 3500 genes and identified 137 candidate genes for which loss of function leads to observable changes in the hematopoietic development. Targeting RNAi to maturing, progenitor, and regulatory cell types identified key subsets that either limit or promote blood cell maturation. Bioinformatic analysis reveals gene enrichment in several previously uncharacterized areas, including RNA processing and export and vesicular trafficking. Lastly, the participation of students in this course-based undergraduate research experience (CURE) correlated with increased learning gains across several areas, as well as increased STEM retention, indicating that authentic, student-driven research in the form of a CURE represents an impactful and enriching pedagogical approach.


Sign in / Sign up

Export Citation Format

Share Document