scholarly journals Methyl Orange Degradation using TiO2 Powder and Immobilized TiO2 Photocatalysts

Author(s):  
Nadhra Hidayah binti Mohd Halim ◽  
Mohd Hasmizam Razali

Methyl orange is one of the anionic dyes and is a major pollutant from textile industry that enters both aquatic and atmospheric systems. In this research, methyl orange was degraded using TiO2 powder and immobilized TiO2 on glass. Titanium tetra-isopropoxide (TTIP) was used for preparation of TiO2 powder using soft chemistry method, and it was immobilized on glass via paste-gel coating method. The prepared photocatalysts were characterized by XRD and SEM.  Highly crystalline anatase TiO2 powder photocatalyst was obtained. Meanwhile, immobilized TiO2 was less crystalline and agglomerated onto the glass surface. TiO2 powder had higher degradation rate (71%) compared to immobilized TiO2 (52%) due to its chemical stability and larger amount of photocatalyst contacted with methyl orange during the degradation process.

2012 ◽  
Vol 487 ◽  
pp. 635-639
Author(s):  
Wen Jie Zhang ◽  
Hong Liang Xin ◽  
Hong Bo He

Porous and smooth TiO2 film electrodes prepared by sol-gel method were used on methyl orange degradation by an electro-assisted photocatalytic degradation process. Methyl orange cannot be degraded under applied potential solely below 2.0 V. When the applied potential was below 1.3 V, methyl orange degradation rates on porous TiO2 film increased from 5% at 0 V to 65.3% at 1.3 V, and degradation rates on smooth TiO2 film changed from 2.2% at 0 V to 61.1% at 1.3 V. Electro-assisted photocatalytic degradation rate on porous film was better than that on smooth film in the whole electrolyte concentration range. Electro-assisted degradation exhibited the same rising trend along with reaction time on the porous and smooth films.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34206-34215 ◽  
Author(s):  
Yen-Yie Lau ◽  
Yee-Shian Wong ◽  
Tjoon-Tow Teng ◽  
Norhashimah Morad ◽  
Mohd Rafatullah ◽  
...  

Cationic dye (methylene blue) and anionic dye (methyl orange) degradation in the coagulation process was demonstrated.


2011 ◽  
Vol 239-242 ◽  
pp. 39-43
Author(s):  
Ying Na Xie ◽  
Zheng De Wang

Photocatalytic degradation of methyl orange in water was examined using Co-doped TiO2 nanoparticles. These photocatalysts were synthesized by a sol–gel method from titanium tetra-isopropoxide with different concentrations of Co(III) dopant and calcination temperature at 600°C. The samples were characterized by XRD, DRS, TEM analysis. The XRD results showed that the anatase-to-rutile phase transformation was greatly inhibited by Co ion doping. The increase of Co doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of the nanoparticles under UV light was investigated by measuring the photodegradation of methyl orange solutions. Parameters affecting photocatalytic process such as the dosage of catalyst, dopant and methyl orange concentrations were investigated. The degradation process was optimized using a Co concentration of 1.0 mol%, 30mg Co-doped TiO2 and MO concentration of 10mg/L.


2020 ◽  
Vol 10 (2) ◽  
pp. 2320-2330

In this paper, Chitosan Silica Composite (CSC) was prepared successfully. It was effectively used as a photocatalyst in the degradation process of Methyl Orange from the aqueous medium under sunlight irradiation. The photocatalytic degradation studies were carried out by varying contact time, pH, CSC dosage, and concentration of Methyl Orange. The maximum degradation percentage of Methyl Orange onto CSC was 94.01%, indicates that it has good degradation ability towards anionic dyes. The results revealed that Methyl Orange degradation was very high in an acidic medium (pH 4) at 70 minutes, and the optimum CSC dosage (0.1g). The initial dye concentration of Methyl Orange was fixed as 10ppm. The experimental data were interpreted using adsorption isotherm models like Freundlich, Langmuir, and kinetic models such as Pseudo first order and second order. The results revealed that Methyl Orange's adsorption onto CSC obeys Langmuir Isotherm model shows monolayer adsorption on the composite surface, and it follows Pseudo second order kinetics. Qm(maximum adsorption capacity) for the adsorption of Methyl Orange onto CSC was 12.19 mg/g.


2012 ◽  
Vol 487 ◽  
pp. 640-643
Author(s):  
Wen Jie Zhang ◽  
Fei Fei Bi ◽  
Hong Bo He

Porous and smooth TiO2 film electrodes prepared by sol-gel method were used on methyl orange degradation by an electro-assisted photocatalytic degradation process. The results indicates that methyl orange was barely degraded under the potential alone, availing that potential under 1.8 V had no noticeable effect on removal of the dye. The porous film electrode showed better electro-assisted photocatalytic activity than the smooth film electrode when the potential was above 0.6 V. The porous film showed better activity than the smooth film in nearly all the concentration range except for the highest one. The porous film exhibited better activity than the smooth one.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nimisha Jadon ◽  
Gulzar Ahmad Bhat ◽  
Manoharmayum Vishwanath Sharma ◽  
Harendra Kumar Sharma

Background: The study focuses on the synthesis of chitosan/ Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation. Methods: The synthesized chitosan/ Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles were less than 10nm and the crystallite size was 1.22 nm.The synthesized chitosan/ Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution.The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsoption of methyl orange on Chitosan/ Fe2O3nanocomposite. Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment which indicate that Chitosan/ Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4661
Author(s):  
Jayachamarajapura Pranesh Shubha ◽  
Haralahalli Shivappa Savitha ◽  
Syed Farooq Adil ◽  
Mujeeb Khan ◽  
Mohammad Rafe Hatshan ◽  
...  

Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were successfully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation. The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation time, pH of dye solution and dye concentration on the photodegradation activity, was systematically studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy, and for best results, concentrations of dye and catalysts have to be maintained in a specific range. The prepared photocatalysts are exemplary and could be employed for wastewater handling and several ecological applications.


2020 ◽  
Vol 18 (1) ◽  
pp. 129-137
Author(s):  
Yayuk Astuti ◽  
Rizka Andianingrum ◽  
Abdul Haris ◽  
Adi Darmawan ◽  

AbstractSynthesis of bismuth oxide synthesis through the precipitation method using H2C2O4 and Na2CO3 precipitating agents, identification of physicochemical properties and its photocatalysis activity for methyl orange degradation were conducted. The bismuth oxide synthesis was undertaken by dissolving Bi(NO3)3.5H2O in HNO3, then added precipitating agents to form precipitate. The results showed that bismuth oxide produced by H2C2O4 precipitating agent was a yellow powder containing a mixture of α-Bi2O3 (monoclinic) and β-Bi2O3 (tetragonal), porous with size of 28-85 μm. Meanwhile, the use of Na2CO3 as precipitating agent resulted in bismuth oxide consisting of α-Bi2O3 and β-Bi2O3 and Bi2O4, irregular shape without pore being 40-115 μm in size. Bismuth oxide synthesized with H2C2O4 precipitating agent showed higher photocatalytic activity compared to bismuth oxide synthesized using Na2CO3 on degrading methyl orange dye with degradation rate constants of 2.35x10-5 s-1 for H2C2O4 and 1.81x10-5 s-1 for Na2CO3.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 913
Author(s):  
Jinyi Wang ◽  
Sen Yang

The development of low-cost and high-efficiency catalysts for wastewater treatment is of great significance. Herein, nanoporous Cu/Cu2O catalysts were synthesized from MnCu, MnCuNi, and MnCuAl with similar ligament size through one-step dealloying. Meanwhile, the comparisons of three catalysts in performing methyl orange degradation were investigated. One of the catalysts possessed a degradation efficiency as high as 7.67 mg·g−1·min−1. With good linear fitting by the pseudo-first-order model, the reaction rate constant was evaluated. In order to better understand the degradation process, the adsorption behavior was considered, and it was divided into three stages based on the intra-particle diffusion model. Three different temperatures were applied to explore the activation energy of the degradation. As a photocatalytic agent, the nanoporous structure of Cu/Cu2O possessed a large surface area and it also had low activation energy, which were beneficial to the excellent degradation performance.


Sign in / Sign up

Export Citation Format

Share Document