scholarly journals Development of a Millet Destoner for Small Scale Farmers

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Aminu Saleh

Post-harvest processes of millet rely on labour-intensive manual operations in Nigeria while its produce is associated with contaminants. A manually-operated destoner was developed to increase grain value for commercial production and reduce drudgery. To construct the destoner sieves, physical properties of one thousand randomly selected grains were determined digital Vernier callipers. Millet grains to be destoned was fed through the upper portion of the destoner being operated through the crank handle while the pure grains were collected at the discharge outlet. Results obtained shows the geometric diameter of the grains increase progressively from 3.51-4.22mm as moisture content increases. A screen aperture of 3.5mm was constructed. Grains’ surface area, volume and sphericity increased from 22.67-34.82mm², 8.19-13.98mm³ and 0.691-0.776g respectively. Mass, true density and terminal velocity of 1000 seed increased from 13.56-43.84g, 1548.91-1689.87kg/m³ and 2.69-4.58m/s respectively. The bulk density of millet also increased as moisture content increases but decreased beyond 12.5% moisture level indicating that millet floats on  water and was transpoted with the aid of an auger. About 50kg of millet was poured into the destoner to occupy its  ⅓ capacity while the remaining ⅔ was filled with water. Destoner output was  at 95% efficiency.Key words: Destoner, Millet, Processing, Properties, Contaminants

2016 ◽  
Vol 44 (2) ◽  
Author(s):  
Shrikant Baslingappa Swami ◽  
N.J. Thakor A.M. Gawai

<p>The physical properties, viz., geometric diameter, surface area, sphericity, volume, bulk density, true density and angle of repose was measured for  four  cashew varieties <em>viz</em>., <em>Vengurle 1, Vengurle 3, Vengurle 4</em>  and <em>Vengurle 7</em> at different moisture content (15 to 87% db). For <em>Vengurle</em> 1 as the moisture content increased, the physical properties i.e., geometric mean diameter, volume, surface area, true density and angle of repose increased from 20.8 to 22.1 mm, 3485 to 4416 mm<sup>3</sup>, 1355 to 1540 mm<sup>2</sup>, 984 to 1030 kg m<sup>-3</sup> and 32 to 37˚, respectively. The sphericity and bulk density decreased from 74.2 to 71.4 per cent and 490 to 418 kg m<sup>-3</sup> respectively. For <em>Vengurle 3</em> geometric mean diameter, volume, surface area, true density and angle of repose increased from 27.2 to 28.6 mm, 7912 to 9169 mm<sup>3</sup>, 2320 to 2567 mm<sup>2</sup>, 1020 to 1048 kg m<sup>-3</sup> and 33 to 35.5˚, respectively. The sphericity and bulk density decreased from 75.5 to 75.2 per cent and 531 to 470 kg m<sup>-3</sup> respectively. For <em>Vengurle 4</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 21.0 to 24.1mm, 3362 to 5113 mm<sup>3</sup>, 1391 to 1828 mm<sup>2</sup>, 970 to 1030 kg m<sup>-3</sup> and 32.5 to 38˚,  respectively. The sphericity and bulk density decreased from 65.8 to 66.8 per cent, 517 to 462 kg m<sup>-3</sup>, respectively. For <em>Vengurle 7</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 24.2 to 24.9 mm, 5102 to 5547 mm<sup>3</sup>, 1840 to 1941 mm<sup>2</sup>, 998 to 1045 kg m<sup>-3</sup> and 33 to 38˚, respectively. The sphericity and bulk density decreased from 65.4 to 65.8 per cent, 518 to 438 kg m<sup>-3</sup>, respectively.</p>


Author(s):  
Elton A. S. Martins ◽  
André L. D. Goneli ◽  
Cesar P. Hartmann Filho ◽  
Munir Mauad ◽  
Valdiney C. Siqueira ◽  
...  

ABSTRACT Safflower is an oil crop and its oil can be used for food and industrial purposes. However, there is little information about the physical properties of these grains, which is important for the planning and execution of post-harvest stages. Thus, this study was carried out with the aim of evaluating the effect of drying on the main physical properties of safflower grains. Safflower grains were harvested with an initial moisture content of approximately 0.445 decimal d.b. (dry basis) and subjected to drying in an oven with forced air circulation at 40 °C, until the grains reached a final moisture content of 0.073 ± 0.008 decimal d.b. During the drying, bulk density and true density, porosity, thousand-grain mass, circularity, sphericity, projected and surface area, and surface-volume ratio were measured. Based on these results, it is concluded that all gravimetric and geometrical characteristics of safflower grains were reduced due to the reduction of moisture content, except for the surface-volume ratio.


2017 ◽  
Vol 38 (1) ◽  
pp. 157
Author(s):  
Thaís Adriana de Souza Smaniotto ◽  
Osvaldo Resende ◽  
Kelly Aparecida de Sousa ◽  
Rafael Cândido Campos ◽  
Denner Nogueira Guimarães ◽  
...  

The aim of this work was to determine the effect that the moisture content has on the physical properties of sunflower seeds. The cultivar Olisun 3, with an initial moisture content of 34.1 (% wb), was used and then subjected to drying in an oven with forced air ventilation under three temperature conditions: 40, 60 and 80 °C. The reduction in the moisture content during drying was monitored by the gravimetric method until it reached a final moisture content of 8.0 ± 1.0 (% wb). The physical properties were analysed: the bulk density, true density, intergranular porosity and volumetric shrinkage of the mass and unit and terminal velocity. The reduction in the moisture content influenced the physical properties of sunflower seeds and caused a decrease in the intergranular porosity, bulk density and true density at all examined temperatures. The mass and volumetric contractions of the unit and reduction in shrinkage rates all increased with the drying of sunflower seeds at all studied temperatures. The terminal velocity increased as the moisture content of the grains increased, which was more evident at the drying temperature of 80 °C.


2012 ◽  
Vol 26 (1) ◽  
pp. 91-93 ◽  
Author(s):  
R. Ahmadi ◽  
A. Kalbasi-Ashtari ◽  
S. Gharibzahedi

Physical properties of psyllium seed Physical properties ie dimensions, volume, surface area, sphericity, true density, porosity, angle of repose, terminal velocity, static and dynamic friction coefficients on plywood, stainless steel, glass and galvanized iron sheet, force required for initiating seed rupture in horizontal and vertical orientations of psyllium seed at a moisture content of 7.2% (w.b.)were determined.


2010 ◽  
Vol 28 (No. 6) ◽  
pp. 547-556 ◽  
Author(s):  
E. Altuntas ◽  
M. Erkol

The variations in physical properties such as the size dimensions, unit mass, sphericity, projected area, bulk density, true density, volume, coefficient of friction on various surfaces, and terminal velocity of shelled and kernel walnuts as a function of the moisture content were determined. With an increase in the moisture content, the sphericity, projected area, bulk density, volume, and porosity of shelled and kernel walnuts increased, whereas the true density linearly decreased. Studies on rewetted walnuts showed that the terminal velocity increased from 14.17 m/s to 15.50 m/s, and from 12.60 m/s to 14.35 m/s, for shelled and kernel walnuts, respectively. The static and dynamic coefficients of friction of shelled and kernel walnuts on chipboard and plywood surfaces also increased linearly with an increase in the moisture content.


2009 ◽  
Vol 55 (No. 4) ◽  
pp. 165-169 ◽  
Author(s):  
M.C. Ndukwu

The research looked at some selected physical properties of <I>Brachystegia eurycoma</I>, such as axial dimension, roundness, sphericity, surface area, bulk density, solid density, porosity, and volume which are essential in the design and construction of the processing and handling equipments of <I>Brachystegia eurycoma</I>. All the above physical properties measured showed some deviations from the average values which is typical of agricultural biomaterials. Solid density showed the highest deviation of 4.04 g/mm<sup>3</sup> while the volume showed the least deviation of 0.01 mm<sup>3</sup> when compared to those of other physical properties. The angle of repose increased with the increase in the moisture content with a coefficient of determination of 0.98.


2021 ◽  
Vol 7 (2) ◽  
pp. 083-090
Author(s):  
Ubong Edet Assian ◽  
Akindele Folarin Alonge

Kariya kernel is very rich in essential fats, oils and other valuable nutrients which may find applications in many food formulations. To harness these nutrients, processing equipment and machines are to be used. In order to effectively design these machines, the values of some physical properties of kariya nut and kernel are needed. In this study, some physical properties of the kariya nut and kernel were investigated. Results showed that mean major diameter, intermediate diameter, minor diameter and unit mass obtained at the nut moisture content of 19.83 ± 3.71 (w.b.) were 14.16 ± 0.79 mm, 10.17 ± 0.36 mm, 9.78 ± 0.28 mm and 0.503 ± 0.05g, respectively while the corresponding values obtained at the kernel moisture content of 8.89 ± 2.22% (w.b.) were 9.07 ±0.72 mm, 7.32 ±0.49 mm, 7.08 ± 0.41 mm and 0.328 ± 0.03 g, respectively. The values of calculated geometric mean diameter were 11.20 ±mm and 7.77 ± 0.36 mm, for the kariya nut and kernel, respectively. The skewness value of the sample distribution of 0.08 and -0.24 were recorded for the kariya nut and kernel, respectively. The sphericity, surface area, volume, density, bulk density and porosity were 79.27 ± 3.07%, 394.75 23.13 mm2, 738.37 ± 64.96 mm3 , 681.1 ± 20 kg/m3, 440.24 ± 0.04 kg/m3 and 36.65 ± 0.74% ; and 85.97 ± 5.27%, 189.85 ± 17.34 mm2, 246.71 ± 33.60 mm3, 1342.1 ± 136.23 kg/m3, 773.06 ± 0.06 kg/m3 and 42.28 ± 4.10% for the kariya nut and kernel respectively.


2019 ◽  
Vol 38 (03) ◽  
Author(s):  
P A Pawase ◽  
A Shingote ◽  
U D Chavan

The study determined the physical properties of finger millet (FM) (Eluesine coracana) grains and the functional properties of FM flour. Physical properties such as colour attributes, sample weight, bulk density, true density, porosity, surface area, sample volume, aspect ratio, sphericity, dimensional properties and moisture content of grain cultivars were determined. Water absorption capacity (WAC), bulk density (BD), dispersibility, viscosity and micro-structure of FM flours were also evaluated. Data collected were analyzed using SPSS statistical software version 23.0. Results showed that milky cream cultivar was significantly higher (p less than 0.05) than other samples in sample weight, bulk density, true density, aspect ratio and sphericity. However, pearl millet, used as a control, was significantly different from FM flour on all dimensional properties. Moisture content of milky cream showed higher significant difference for both grains and flours as compared to brown and black grain/flours. Milky cream cultivar was significantly different in L , b , C , H values, WAC, BD and dispersibility for both FM grains and flours. Data showed that brown flour was significantly higher in viscosity than in milky and black flours. Microstructure results revealed that starch granules of raw FM flours had oval/spherical and smooth surface. The study is important for agricultural and food engineers, designers, scientists and processors in the design of equipment for FM grain processing. Results are likely to be useful in assessing the quality of grains used to fortify FM flour.


2020 ◽  
Vol 36 (6) ◽  
Author(s):  
Aline Almeida Da Paixão ◽  
Paulo Cesar Corrêa ◽  
Fernanda Machado Baptestini ◽  
Juliana Soares Zeymer ◽  
Jaime Daniel Bustos-Vanegas

Beans are the main source of protein of plant origin in the Brazilian diet, they also contain phenolic compounds, antioxidants, iron, fibers and vitamins. The BRSMG Majestoso cultivar belongs to the commercial group of carioca beans, displays high productivity, excellent health and a 90-day cycle, has high yield and is resistant to disease. The study of physical properties enables the prediction of agricultural products behavior relative to responses of physical and chemical treatments, in order to allow the maintenance of quality and safety of processed foods. The aim of the present study was to evaluate the effect of drying on the physical characteristics of beans of the BRSMG Majestoso cultivar. Beans with an initial moisture content of approximately 0.2660 d.b. (dry basis) were used, and dried at 40ºC. The following physical characteristics were determined: bulk density, unit density, intergranular porosity, 1000-grain weight, sphericity, circularity, geometric diameter, unit volume, projected area, surface area and the surface to volume ratio. Based on the results, a reduction in the moisture content of the beans promotes an increase in bulk density, unit density, porosity, sphericity, circularity and the surface to volume ratio. Conversely, the 1000-grain weight, geometric diameter, unit volume, projected area and surface area decreased as the moisture content of the beans was reduced.


2013 ◽  
Vol 27 (4) ◽  
pp. 491-494 ◽  
Author(s):  
D. Zare ◽  
A. Bakhshipour ◽  
G. Chen

Abstract Physical properties of cumin and caraway seeds were measured and compared at constant moisture content of 7.5% w.b. The average thousand mass of grain, mean length, mean width, mean thickness, equivalent diameter, geometric mean diameter, surface area, volume, sphericity, aspect ratio, true density, bulk density and porosity were measured for cumin and caraway. There are significant differences (p<0.01) in most physical properties of cumin and caraway, except porosity and sphericity


Sign in / Sign up

Export Citation Format

Share Document