scholarly journals THE EFFECTIVENESS OF COMPOST, HUMIC ACID AND PURE FULVATE ON IMPROVEMENT OF ULTISOL SOIL CHEMICAL PROPERTIES

Author(s):  
Resman ◽  
Sahta Ginting ◽  
Muhammad Tufaila ◽  
Fransiscus Suramas Rembon ◽  
Halim

The research aimed to determine the effectiveness of compost containing humic and fulvic acids, and pure humic and fulvic acids in increasing of Ultisol soil chemical properties. The research design used a randomized block design (RBD), consisting of 10 treatments, namely K0: 0 g polybag-1, KO1: 500 g polybag-1, KO2: 500 g polybag-1, KO3: 500 g polybag-1, KO4: 500 g polybag-1, KO5: 500 g polybag-1, KO6: 500 g polybag-1, KO7: 500 g of polybags-1, H: 50 g of polybag-1, A: 500 g polybag-1. Each treatment was repeated three times and obtained 30 treatment units. The results showed that pH H2O (K0: 4.49, KO1: 5.64, KO2: 5.47, KO3: 5.43, KO4: 5.51, KO5: 5.39, KO6: 5.48, KO7: 6.17, H: 5.06, F: 5.15), total-N (%) (K0: 0.13, KO1: 0.17, KO2: 0.18, KO3: 0.30, KO4: 0.25, KO5: 0.24, KO6: 0.29, KO7: 0.36, H: 0.16, F: 0.14), organic-C (%) (K0: 1.85, KO1; 2.30, KO2: 2.24, KO3: 2.33, KO4: 2.62, KO5: 2.25, KO6: 2.27, KO7: 2.95, H: 2.32, F: 2.26) , available-P (%) (K0: 2.75, KO1: 3.24, KO2: 3.16, KO3: 3.27, KO4: 3.57, KO5: 3.31, KO6: 3.37, KO7: 3.89, H: 3.10, F: 3.12), exchangeable-Al (me100g-1) (K0: 2.51, KO1: 2.11, KO2: 2.13, KO3: 2.15, KO4: 1.88, KO5: 2.14, KO6: 2.12, KO7: 1.75, H: 2.16, F: 2.17), base saturation (%) (K0: 30.91, KO1: 63.48, KO2: 52.63, KO3: 53.76, KO4: 56.13, KO5: 54.96, KO6: 56.71, KO7: 65.53, H: 39.11, F: 42.76), cation exchange capacity (me100g-1) (K0: 12.76, KO1: 15.64, KO2: 14.86, KO3: 14.35, KO4: 14.13, KO5: 15.01, KO6: 15.50, KO7: 17.94, H: 14.19, F: 13.73). The combined compost treatment of three types of organic matter (Imperata cylindrica + Rice straw + Glincidia sepium) is more effective in increasing the pH, H2O as 37.42%, total-N as 176.92%, Organic-C as 59.46%, available-P as 41.45%, base saturation as 65.53%, cation exchange capacity as 17.94% and exchangeable -Al, Alreduction as 30.28% of ultisol soil. KEY WORDS: compost, humic acid, fulvate, soil chemical, ultisol

2019 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Ratna Taher ◽  
Makruf Nurudin ◽  
Eko Hanudin

Understanding the nature of the soil is very important to know the potential and the proper management of the soil. This study aimed to determine the differences in morphological, physical, and chemical properties of the soils developing from gabbro, phylitte and chert parent materials. The soil profile was made to represent each parent rock of gabbro, phyllite and chert located on the upper and middle slopes with pine-dominated vegetation and mixed gardens. Observation in the field is a professional description to observe soil morphology. Soil samples were taken at each horizon to analyze soil physical properties (bulk density, particle density, and texture), soil chemical properties (pH, exchanged cations, cation exchange capacity, available P, organic C, and total N). Texture analysis results showed that clay content of the soil developing from parent rock of Gabro 1 is the highest, followed by the soil clay content from  Chert 1, Phyllite 1, Chert 2, Phyllite 2, and Gabbro 2, respectively. The order of soil acidity level (pH) is Gabbro 2 > Gabbro 1> Chert 1 ~ Chert 2 > Phyllite 1 ~ Phyllite 2. Meanwhile, the order of the cation exchange capacity is Gabbro 1> Gabbro 2> Phyllite 1> Chert 1> Phyllite 2> Chert 2, and the order of the base saturation is Chert 2> Gabbro 2> Chert 1> Phyllite 2 > Phyllite1> Gabbro 1.


2007 ◽  
Vol 56 (2) ◽  
pp. 187-192 ◽  
Author(s):  
M.A. Bustamante ◽  
C. Paredes ◽  
R. Moral ◽  
J. Moreno-Caselles ◽  
M.D. Pérez-Murcia ◽  
...  

The winery and distillery wastes (grape stalk and marc (GS and GM, respectively), wine lees (WL) and exhausted grape marc (EGM)) are produced in great amounts in the Mediterranean countries, where their treatment and disposal are becoming an important environmental problem, mainly due to their seasonal character and some characteristics that make their management difficult and which are not optimised yet. Composting is a treatment widely used for organic wastes, which could be a feasible option to treat and recycle the winery and distillery wastes. In this experiment, two different piles (pile 1 and 2) were prepared with mixtures of GS, GM, EG and sewage sludge (SS) and composted in a pilot plant by the Rutgers static pile composting system. Initially, GS, GM and EGM were mixed, the pile 1 being watered with fresh collected vinasse (V). After 17 days, SS was added to both piles as a nitrogen and microorganisms source. During composting, the evolution of temperature, pH, electrical conductivity, total organic C, total N, humic acid-like C and fulvic acid-like C contents, C/N ratio, cation exchange capacity and germination index of the mixtures were studied. The addition of V in pile 1 produced higher values of temperature, a greater degradation of the total organic C, higher electrical conductivity values and similar pH values and total N contents than in pile 2. The addition of this effluent also increased the cation exchange capacity and produced a longer persistence of phytotoxicity. However, both piles showed a stabilised organic matter and a reduction of the phytotoxicity at the end of the composting process.


2011 ◽  
Vol 25 (2) ◽  
pp. 100
Author(s):  
Djoko Mulyanto ◽  
S Subroto P.S. ◽  
Herwin Lukito

The variation of soil color that developed on carbonate rocks which are generally white, very interesting to be studied. The aim of the study is to examine the formation of two pedons of black soil and red soil by hue 10 YR and hue 5 to 2.5 YR which successively developed on marly limestones and calcarenite. Analysis of mineral properties consist of the total minerals of sand fraction, clay fraction and rock powders. Soil chemical properties include: pH, organic C, exchangeable cations and cation exchange capacity, CaCO3, the amorphous-crystalline of Fe and Mn, the total of Fe and Mn, the analysis of physical properties is the texture of seven fractions. The results showed that the development of the red soil is much more developed than black soil that shown by intensively decalcification process of red soil that impact on the low of pH, base saturation and cation exchange capacity, whereas the development of black soil is inhibited. The formation of black soil is more inherited of clay bearing marly limestone after carbonate dissolution, whereas the red soil development through rubification and illuviation.


2021 ◽  
Vol 4 (2) ◽  
pp. 80-87
Author(s):  
Boris M. Klenov ◽  
Mikhail V. Yakutin

The article analyzes the change in the indicator of the cation exchange capacity (CEC) in the humus of the latitudinal series of soils in Western Siberia. It is shown that not all humus substances are able to perform the function of cation exchange and participate in the formation of the organic part of the soil EC. It is shown that the organic matter in the latitudinal range of soils in Western Siberia is distributed in accordance with the known geographical pattern of the distribution of the total humus stock and the main characteristics of this stock. An unconventional evaluation method for determining the EC is proposed using analytical data on the content of acidic functional groups in humic acids and the composition of humic substances, which allows us to separately assess the contribution of humic and fulvic acids in the composition of the EC of the soil.


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


2015 ◽  
Vol 39 (3) ◽  
pp. 643-653 ◽  
Author(s):  
Fabrício de Araújo Pedron ◽  
Rodrigo Bomicieli de Oliveira ◽  
Ricardo Simão Diniz Dalmolin ◽  
Antonio Carlos de Azevedo ◽  
Ricardo Vargas Kilca

Despite numerous studies conducted on the lower limit of soil and its contact with saprolite layers, a great deal of work is left to standardize identification and annotation of these variables in the field. In shallow soils, the appropriately noting these limits or contacts is essential for determining their behavior and potential use. The aims of this study were to identify and define the field contact and/or transition zone between soil and saprolite in profiles of an Alisol derived from fine sandstone and siltstone/claystone in subtropical southern Brazil and to subsequently validate the field observations through a multivariate analysis of laboratory analytical data. In the six Alisol profiles evaluated, the sequence of horizons found was A, Bt, C, and Cr, where C was considered part of the soil due to its pedogenetic structure, and Cr was considered saprolite due to its rock structure. The morphological properties that were determined in the field and that were different between the B and C horizons and the Cr layer were color, structure, texture, and fragments of saprolite. According to the test of means, the properties that support the inclusion of the C horizon as part of the soil are sand, clay, water-dispersible clay, silt/clay ratio, macroporosity, total porosity, resistance to penetration, cation exchange capacity, Fe extracted by DCB, Al, H+Al, and cation exchange capacity of clay. The properties that support the C horizon as a transition zone are silt, Ca, total organic C, and Fe extracted by ammonium oxalate. Discriminant analysis indicated differences among the three horizons evaluated.


Soil Research ◽  
1994 ◽  
Vol 32 (5) ◽  
pp. 1015
Author(s):  
PW Moody

Krasnozems (Ferrosols) characteristically have high contents of citrate-dithionite extractable Fe and moderate to high contents of clay throughout the profile. They typically have low cation exchange capacity (2-20 cmolc kg-1), high P sorbing ability, and a significant anion exchange capacity at depth. The chemistry of krasnozems is dominated by the variable charge characteristics of the organic matter and the oxy-hydroxides of Fe and Al which occur in the predominantly kaolinitic clay fraction. The effects of surface charge characteristics, organic matter, and extractable iron and aluminium on the cation and anion exchange capacities, P sorbing abilities and pH buffer capacities of Australian krasnozems are reviewed. A selection of reports of nutrient deficiencies and toxicities in these soils is presented and briefly discussed. Published data on the chemical composition of the soil solutions of krasnozems are reviewed. Data from a suite of paired (undeveloped and developed) krasnozem profiles from eastern Australia indicate that exchangeable Ca and Mg, effective cation exchange capacity (ECEC), pH buffer capacity (pHBC) and total N decrease significantly (P < 0.05) in the A horizon following development, while exchangeable K, ECEC and pHBC decrease (P < 0-05) in the B horizon. The decreases in the A horizon are shown to be a direct consequence of the decline in organic matter which occurs following development. Because of the crucial role that organic matter plays in the chemical fertility of krasnozems, they are less likely to maintain their fertility under exploitative conditions than other productive clay soils such as Vertosols. It is concluded that the sustainable use of krasnozems will depend on maintenance or enhancement of organic matter levels, maintenance of surface and subsoil pH by regular application of amendments, minimization of erosion, and replacement of nutrients removed in harvested products.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 3015
Author(s):  
Fethi Kooli ◽  
Souad Rakass ◽  
Yan Liu ◽  
Mostafa Abboudi ◽  
Hicham Oudghiri Hassani ◽  
...  

The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C16 cations was dependent on the hexadecyltrimethylammonium (C16) salt solution used, the organoclay prepared from C16Br salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from C16Cl and C16OH salt solutions. The basal spacing of these organoclays was in the range of 1.81 nm to 2.10 nm, indicating a similar orientation of the intercalated surfactants, and could indicated that the excess amount of surfactants, above the cation exchange capacity of 0.95 meq/g could be adsorbed on the external surface of the clay mineral sheets. These organoclays were found to be stable in neutral, acidic, and basic media. The thermal stability of these organoclays was carried out using thermogravimetric analysis and in-situ X-ray diffraction (XRD) techniques. The decomposition of the surfactant occurred at a maximum temperature of 240 °C, accompanied with a decrease of the basal spacing value close to 1.42 nm. The application of these organoclays was investigated to remove an acidic dye, eosin. The removal amount was related to the initial used concentrations, the amount of the surfactants contents, and to the preheated temperatures of the organoclays. The removal was found to be endothermic process with a maximum amount of 55 mg of eosin/g of organoclay. The value decreased to 25 mg/g, when the intercalated surfactants were decomposed. The reuse of these organoclays was limited to four regeneration recycles with a reduction of 20 to 30%. However, noticeable reduction between 35% to 50% of the initial efficiency, was achieved after the fifth cycle, depending of the used organoclays.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Muhammad Fajri ◽  
Pratiwi PRATIWI ◽  
Yosep Ruslim

Abstract. Fajri M, Pratiwi, Ruslim Y. 2020. The characteristics of Shorea macrophylla’s habitat in Tane’ Olen, Malinau District, North Kalimantan Province, Indonesia. Biodiversitas 21: 3454-3462.  Shorea macrophylla is a tree species in Tane' Olen forest area. This study analyzed the soil’s physical and chemical properties, topography, and microclimate of S. macrophylla’s habitat. A purposive method was used to select a sampling plot and to place the subplots. Soil was analyzed to determine the physical properties, i.e., texture, bulk density, porosity, and water content, and the chemical properties, i.e., pH, CEC, total N, organic C, C/N ratio, P, K , and Al saturation. Importance value index was determined for each tree species to know the species composition in the study site. Only the dominant species were presented. The soil at the study site had bulk density of 0.60-1.31 gram cm³-1, porosity 50.60%-77.35%, water content 34.88%-95.37%, and soil texture sandy clay. The chemical properties of the soil were as follows: pH was 3.6-4.8, N 0.05%-0.19%, organic C 1.40%-3.65%, P 0.41-1.22 mg 100 gr-1, K 58.68-232.55 mg 100 gr-1, and Cation Exchange Capacity (CEC) 5.35-10.81 meg 100gr -1. Slope ranged between 0 and 25%. The microclimate characteristics were as follows: temperature was 24-26.5°C, relative humidity 76-87%, and light intensity 145-750 Lm. Trees species with an IVI ≥ 10% were S. macrophylla, Madhuca spectabilis, Myristica villosa Warb, Scorodocarpus borneensis, Eugenia spp., Palaquium spp., Macaranga triloba, Syzygium inophyllum and Shorea sp. Positive associations were observed between S. macropylla and S. borneensis, Eugenia spp., Palaquium spp.. and M. triloba, and negative associations were observed between S. macropylla and M. spectabilis, M. villosa Warb, S. inophyllum, and Shorea sp. S. macrophylla grows on riversides with flat and gentle topography, acidic soil, and lower fertility but with suitable microclimate. This species can be recommended to be planted in degraded tropical forest areas but the microclimate and soil properties should be taken into account.


2008 ◽  
Vol 38 (6) ◽  
pp. 1646-1660 ◽  
Author(s):  
Pavel Šamonil ◽  
Barbora Šebková ◽  
Jan Douda ◽  
Tomáš Vrška

A hypothesis was verified that forest floor chemistry varies according to position within the windthrow (mound, pit, or control). A parallel assessment was made of differences in the chemistry of horizons and their forms. A total number of 1720 windthrows were studied in the fir–beech primeval forest in the flysch zone of the Western Carpathians. A total of 100 samples were taken on three positions from the following horizons and their forms (in brackets): litter, fermented (amphigenous, zoogenous, or mycogenous), humification (unresolved, zoogenous, residues, or humic), and mineral. A random sampling eliminated the effect of correlation between the horizons and positions. Parameters assessed were Q4/6, HA/FA, C-forms, total N, P, K, and Mg contents, soil reaction, and cation-exchange capacity. The positions exhibited a significant difference in the forest floor chemistry even at a level of horizon forms. The position’s significance decreased with the horizon depth. Organic horizons in the pit, in particular, exhibited the lowest content of total humic substances, fulvic acids, and the lowest colour coefficient values. However, the mineral horizon showed no significant differences between the positions within the windthrow. Compared with other humus types, the decomposing wood mass did not exhibit a different ratio of humic and fulvic acids.


Sign in / Sign up

Export Citation Format

Share Document