scholarly journals "Farmers’ Prosperity Through ITC Based Farmers Awareness Programme: An Evidence of Gramin Krishi Mausam Sewa"

2021 ◽  
Vol 66 (2) ◽  
Author(s):  
Shirish , Sharma

The real-time availability of weather information plays a crucial role in agricultural production, food security, and sustainable production (Haile 2005; Rathore 2013; Pandey and Singh, 2019). Thus, any slight aberration in obtaining key weather parameters by the farming community can significantly disrupt the supply chain besides jeopardizing the lives and livelihood of millions of farmers. It is well established that weather parameters influence agricultural operations farm production and productivity, while weather aberration is an important reasonor crop loss in India (Chattopadyaya et al. 2011; Rao et al. 2015; Das et al. 2018). Most of the farmers lack real-time weather-related information to make specific decisions on cropping. Further, the weather-related data for a particular crop seldom available on a single platform (Kumar et al. 2015) though the ICT is rooted firmly. It may be concluded that agriculture and its activities are mostly depend upon weather parameters. The GKMS may create an effort to help the farming community to improve its decision-making. Farmers also adopt GKMS as a tool that may help them decide regarding farming activity. This weather based agromet advisory may also help the farming community to increase the yield as well as for the reducing the cost of cultivation of crops.

2017 ◽  
Vol 55 (7) ◽  
pp. 2137-2142 ◽  
Author(s):  
Deirdre L. Church ◽  
Heather Baxter ◽  
Tracie Lloyd ◽  
Oscar Larios ◽  
Daniel B. Gregson

ABSTRACTLife-threatening infection in neonates due to group BStreptococcus(GBS) is preventable by screening of near-term pregnant women and treatment at delivery. A total of 295 vaginal-rectal swabs were collected from women attending antepartum clinics in Calgary, Alberta, Canada. GBS colonization was detected by the standard culture method (Strep B Carrot Broth subcultured to blood agar with a neomycin disk) and compared to recovery with Strep Group B Broth (Dalynn Biologicals) subcultured to StrepBSelectchromogenic medium (CM; Bio-Rad Laboratories) and the Fast-Track Diagnostics GBS real-time PCR (quantitative PCR [qPCR]) assay (Phoenix Airmid Biomedical Corp.) performed with broth-enriched samples and the Abbottm2000sp/m2000rt system. A total of 62/295 (21%) women were colonized with GBS; 58 (19.7%) cases were detected by standard culture, while CM and qPCR each found 61 (20.7%) cases. The qPCR and CM were similar in performance, with sensitivities, specificities, and positive and negative predictive values of 98.4 and 98.4%, 99.6 and 99.6%, 98.4 and 98.4%, and 99.6 and 99.6%, respectively, compared to routine culture. Both qPCR and CM would allow more rapid reporting of routine GBS screening results than standard culture. Although the cost per test was similar for standard culture and CM, the routine use of qPCR would cost approximately four times as much as culture-based detection. Laboratories worldwide should consider implementing one of the newer methods for primary GBS testing, depending on the cost limitations of different health care jurisdictions.


2011 ◽  
Vol 8 (1) ◽  
pp. 409048 ◽  
Author(s):  
Chuliang Wei ◽  
Qin Xin ◽  
W. H. Chung ◽  
Shun-yee Liu ◽  
Hwa-yaw Tam ◽  
...  

Wheel defects on trains, such as flat wheels and out-of-roundness, inevitably jeopardize the safety of railway operations. Regular visual inspection and checking by experienced workers are the commonly adopted practice to identify wheel defects. However, the defects may not be spotted in time. Therefore, an automatic, remote-sensing, reliable, and accurate monitoring system for wheel condition is always desirable. The paper describes a real-time system to monitor wheel defects based on fiber Bragg grating sensors. Track strain response upon wheel-rail interaction is measured and processed to generate a condition index which directly reflects the wheel condition. This approach is verified by extensive field test, and the preliminary results show that this electromagnetic-immune system provides an effective alternative for wheel defects detection. The system significantly increases the efficiency of maintenance management and reduces the cost for defects detection, and more importantly, avoids derailment timely.


2020 ◽  
Vol 10 (24) ◽  
pp. 9154
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Royo ◽  
Juan Carlos Sánchez ◽  
Jaime Latapia

The purpose of this work is to develop a new Key Performance Indicator (KPI) that can quantify the cost of Six Big Losses developed by Nakajima and implements it in a Cyber Physical System (CPS), achieving a real-time monitorization of the KPI. This paper follows the methodology explained below. A cost model has been used to accurately develop this indicator together with the Six Big Losses description. At the same time, the machine tool has been integrated into a CPS, enhancing the real-time data acquisition, using the Industry 4.0 technologies. Once the KPI has been defined, we have developed the software that can turn these real-time data into relevant information (using Python) through the calculation of our indicator. Finally, we have carried out a case of study showing our new KPI results and comparing them to other indicators related with the Six Big Losses but in different dimensions. As a result, our research quantifies economically the Six Big Losses, enhances the detection of the bigger ones to improve them, and enlightens the importance of paying attention to different dimensions, mainly, the productive, sustainable, and economic at the same time.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3084 ◽  
Author(s):  
Kyoungsoo Bok ◽  
Daeyun Kim ◽  
Jaesoo Yoo

As a large amount of stream data are generated through sensors over the Internet of Things environment, studies on complex event processing have been conducted to detect information required by users or specific applications in real time. A complex event is made by combining primitive events through a number of operators. However, the existing complex event-processing methods take a long time because they do not consider similarity and redundancy of operators. In this paper, we propose a new complex event-processing method considering similar and redundant operations for stream data from sensors in real time. In the proposed method, a similar operation in common events is converted into a virtual operator, and redundant operations on the same events are converted into a single operator. The event query tree for complex event detection is reconstructed using the converted operators. Through this method, the cost of comparison and inspection of similar and redundant operations is reduced, thereby decreasing the overall processing cost. To prove the superior performance of the proposed method, its performance is evaluated in comparison with existing methods.


2010 ◽  
Vol 34-35 ◽  
pp. 1314-1318
Author(s):  
Xin Hua Wang ◽  
Shou Qiang Hu ◽  
Qian Yi Ya ◽  
Shu Wen Sun ◽  
Xiu Xia Cao

Structure and principle of a new kind of diphase opposition giant magnetostrictive self-sensing actuator (SSA for short) is introduced, for which a kind of double outputs high-precision NC stable voltage power is designed. With the method of combining with the hardware design and the software setting, the controllability and reliability of the actuator are greatly improved. And the whole design becomes more reasonable, which saves the cost and improves the practicability. In addition, based on the micro controller unit (MCU) with high-speed control, the scheme design of the real-time separation circuit for dynamic balance signal can effectively identify out and pick up the self-sensing signal which changes from foreign pressure feed back. Then the SSA real-time, dynamic and accurately control is realized. The experiment results show that the voltage power can high-speed and accurately output both output voltages with high current, and that the self-sensing signal decoupling circuit can isolate the self-sensing signals without distortion


2012 ◽  
Vol 8 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Mario Muñoz-Organero ◽  
Pedro J. Muñoz-Merino ◽  
Carlos Delgado Kloos

Different systems have been proposed to estimate the position of a mobile device using Bluetooth based on metrics such as the Radio Signal Strength Indicator (RSSI), the received Bit Error Rate (BER) or the Cellular Signal Quality (CSQ). These systems try to improve the estimation accuracy of the basic and straightforward triangulation method among discovered BT reference base stations at the cost of requiring that the positioning application has access to low level hardware related data (provided by the Host Controller Interface) and obtaining information which is in many cases hardware, and therefore device, dependent. In this paper we design, simulate, implement and validate a Bluetooth positioning system that only requires the ability to handle SDP service records at the application level, achieving mean errors around 1 to 3 meters, improving the basic triangulation method among discovered BT reference base stations.


Sign in / Sign up

Export Citation Format

Share Document