scholarly journals STUDY OF DEFECT ON 180 ML HDPE BOTTLES YOGURT PRODUCTS WITH SMC B11 EXTRUSION BLOW MACHINE AT PT X

KREATOR ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tommy Prasetya Kana ◽  
Handika Dany Rahmayanti ◽  
HM Didik

The type of plastic packaging that is popular in the community is bottle packaging. The plastic material that is generally used to make plastic bottles is High Density Polyethylene (HDPE). The plastic bottle industry in Indonesia usually uses a blow molding process in its production process, where the blow molding process consists of injection blow molding, extrusion blow molding and stretch blow molding. The SMC B11 machine is one of the extrusion blow molding machines used to produce plastic bottle packaging. In producing workpieces, this machine still produces several products that are not in accordance with company standards, including in terms of production cycle times and product defects. Defects or defects that are often encountered include the appearance of spots, bent parison which causes the bottle to bend (the bottle body is thin one side) and blow pin which causes the thread to not fit.Keywords— Bottle, Plastic, Defect, Extrussion Blow Molding

2021 ◽  
Vol 888 ◽  
pp. 129-138
Author(s):  
Munzir Hadengganan ◽  
Djoko Sihono Gabriel

Plastic waste has become a big issue in the world for its large amount of plastic waste in the sea. Most of the plastic waste is plastic packaging which consists of flexible and rigid plastic packaging. This research discusses flexible plastic packaging. Until now, most researches on the loss of plastic materials discuss how to manage plastic waste disposal once it has been used by community: only a few discuss production cycle: while none of them discusses flexible plastic packaging area. This research aims to examine the number of mismanaged materials throughout flexible plastic packaging life cycle using a combination of Material Flow Analysis (MFA) and Life Cycle Analysis (LCA). Based on the literature review, interviews and observations conducted by the author to all stakeholders in the life cycle of flexible plastic packaging, mismanagement of plastic material occurred in each cycle, mostly caused by quality degradation of flexible plastic that could cause plastic waste was not acceptable in the mechanical recycle. The results of this study show that: (1) mismanaged material occurred in all cycles throughout the life cycles of flexible plastic packaging, (2) quality degradation is the main caused of mismanaged material in several cycles, and (3) the mismanaged materials in the life cycle of flexible plastic packaging were 98.29%.


2020 ◽  
Vol 861 ◽  
pp. 213-217
Author(s):  
Sumuncharee Suyraksa ◽  
Pitiya Kamonpatana ◽  
Noppadon Kerddonfag ◽  
Amporn Sane ◽  
Vanee Chonhenchob

This study was aimed to develop conductive packaging for ohmic heating. Polypropylene (PP) was mixed with conductive material (CM) in the ratios of 70:30 (CM30), 75:25 (CM25), and 80:20 (CM20) (w/w), then the conductive bottles were developed using extrusion blow molding process. The bottles were suspended in different sodium sulfate (Na2SO4) solutions (0.2, 0.3, and 0.5% w/w) as a transmitting current medium for ohmic heating and heated for 8 min. The CM30 and CM 25 had the highest electrical conductivity compared to the CM20, however the CM20 exhibited best processability, hence it was selected to be used for ohmic heating of orange juice. Different concentrations of Na2SO4 solutions had the effects on ohmic heating. The CM20 bottle suspended in 0.2% Na2SO4 solution resulted in the most uniform heating and suitable for ohmic processing of orange juice. The new conductive bottles developed could potentially be used for beverage processing by ohmic heating.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Afef Bougharriou ◽  
Mohieddine Jeridi ◽  
Mohamed Hdiji ◽  
Anoir Boughrira ◽  
Kacem Saï

The electric bubbles are a useful product made of PMMA material. They are produced by the stretch blow molding process. Thickness, which reflects the quality of the electric bubble, is a crucial parameter that deserves special attention for the molding process. In this work, finite element simulations of the stretch blow molding process are performed aiming at the determination of the preform geometry to ensure homogeneous thickness of the finished product. The geometrical parameters of the preform are optimized allowing a better homogeneity thickness compared to existing data. The predicted parameters allow the improvement of the thickness distribution. The standard deviation of the thickness is reduced to about 95% compared to the existing bubble.


Author(s):  
Syed Ayesha Yasmeen

Blow Molding is one of the most versatile and economical process available for molding hollow materials. When polyethylene is stretched, it exhibits strain-hardening properties, which are temperature, pressure, velocity and strain-rate dependent. In this paper, preform is made by extrusion and forced between two halves by pressurization. This process includes isothermal and transient flow of Newtonian fluid in complex geometries simultaneous with structuring and solidification. A time dependent problem is defined and setting material properties and boundaries condition for bottle blow molding. Numerical data available in POLYDATA for a time dependent problem using ANSYS POLYFLOW were applied. Results display in form contours associated with different variables at different time steps and good agreement with the bottle thickness profile is observed. In this paper, the analysis of the stretch-blow molding (SBM) process of polyethylene terephthalate (PET), parison plastic bottles is studied by the finite element method (FEM). A hyper elastic constitutive behavior was calibrated using material data available in literature in variant high temperatures and strain rates and was used in the numerical simulation. Hydrostatic pressure with convention heat transfer has been used instead of a blowing process. Comparisons of numerical results with experimental observations demonstrate that the model can predict an overall trend of thickness distribution. Through the study, it becomes clear that the proposed model is applicable for simulating the stretch-blow molding process of PET bottles, and is capable of offering helpful knowledge in the production of bottles and the design of an optimum preform.


Sign in / Sign up

Export Citation Format

Share Document