Nonlinear Lorentz Model for Explicit Integration of Optical Nonlinearity in FDTD

2021 ◽  
Vol 35 (11) ◽  
pp. 1272-1273
Author(s):  
Charles Varin ◽  
Rhys Emms ◽  
Graeme Bart ◽  
Thomas Fennel ◽  
Thomas Brabec

Including optical nonlinearity in FDTD software in a stable, efficient, and rigorous way can be challenging. Traditional methods address this challenge by solving an implicit form of Maxwell’s equations iteratively. Reaching numerical convergence over the entire numerical space at each time step demands significant computational resources, which can be a limiting factor for the modeling of large-scale three-dimensional nonlinear optics problems (complex photonics devices, laser filamentation, ...). Recently, we proposed an explicit methodology based on a nonlinear generalization of the Lorentz dispersion model and developed example cases where it was used to account for both linear and nonlinear optical effects. An overview of this work is proposed here.

1997 ◽  
Vol 15 (4) ◽  
pp. 476-486 ◽  
Author(s):  
J. Camps ◽  
J. Massons ◽  
M. R. Soler ◽  
E. C. Nickerson

Abstract. A three-dimensional meteorological model and a Lagrangian particle dispersion model are used to study the effects of a uniform large-scale wind on the dispersion of a non-reactive pollutant in a coastal region with complex terrain. Simulations are carried out both with and without a background wind. A comparison between model results and measured data (wind and pollutant concentrations) indicates that the coupled model system provides a useful mechanism for analyzing pollutant dispersion in coastal regions.


2020 ◽  
Vol 2020 (1) ◽  
pp. 374-1-374-11
Author(s):  
Thanawut Ananpiriyakul ◽  
Joshua Anghel ◽  
Kristi Potter ◽  
Alark Joshi

Computational complexity is a limiting factor for visualizing large-scale scientific data. Most approaches to render large datasets are focused on novel algorithms that leverage cutting-edge graphics hardware to provide users with an interactive experience. In this paper, we alternatively demonstrate foveated imaging which allows interactive exploration using low-cost hardware by tracking the gaze of a participant to drive the rendering quality of an image. Foveated imaging exploits the fact that the spatial resolution of the human visual system decreases dramatically away from the central point of gaze, allowing computational resources to be reserved for areas of importance. We demonstrate this approach using face tracking to identify the gaze point of the participant for both vector and volumetric datasets and evaluate our results by comparing against traditional techniques. In our evaluation, we found a significant increase in computational performance using our foveated imaging approach while maintaining high image quality in regions of visual attention.


2014 ◽  
Vol 81 (1) ◽  
Author(s):  
T. Passot ◽  
F. Califano

Space plasma physics, pushed by the impressive recent technological developments, is undergoing a period of intense progress. This progress is achieved first at the level of observations, including both remote and in situ measurements, but also on the theoretical side, mainly by means of large scale numerical simulations made possible by the dramatic increase of computational resources. In particular, three-dimensional mainly hybrid but also fully kinetic simulations are today feasible, and large intervals in spatial and time scales can at last be accessed by fluid simulations. Addressing fundamental problems such as, e.g. magnetic reconnection, nonlinear dynamics or turbulence development in the kinetic range, are no longer just a heart's desire today.


2007 ◽  
Vol 129 (4) ◽  
pp. 1065-1071 ◽  
Author(s):  
Gi-Heon Kim ◽  
Allan Kirkpatrick ◽  
Charles Mitchell

In many applications of supersonic injection devices, three-dimensional computation that can model a complex supersonic jet has become critical. However, in spite of its increasing necessity, it is computationally costly to capture the details of supersonic structures in intricate three-dimensional geometries with moving boundaries. In large-bore stationary natural gas fueled engine research, one of the most promising mixing enhancement technologies currently used for natural gas engines is high-pressure fuel injection. Consequently, this creates considerable interest in three-dimensional computational simulations that can examine the entire injection and mixing process in engines using high-pressure injection and can determine the impact of injector design on engine performance. However, the cost of three-dimensional engine simulations—including a moving piston and the kinetics of combustion and pollutant production—quickly becomes considerable in terms of simulation time requirements. One limiting factor is the modeling of the small length scales of the poppet valve flow. Such length scales can be three orders of magnitude smaller than cylinder length scales. The objective of this paper is to describe the development of a methodology for the design of a simple geometry supersonic virtual valve that can be substituted in three-dimensional numerical models for the complex shrouded poppet valve injection system actually installed in the engine to be simulated. Downstream flow characteristics of the jets from an actual valve and various virtual valves are compared. Relevant mixing parameters, such as local equivalent ratio and turbulence kinetic energy, are evaluated in full-scale moving piston simulations that include the effect of the jet-piston interaction. A comparison of the results has indicated that it is possible to design a simple converging-diverging fuel nozzle that will produce the same jet and, subsequently, the same large-scale and turbulent-scale mixing patterns in the engine cylinder as a real poppet valve.


Author(s):  
Giuseppe C. A. DeRose ◽  
Alejandro R. Díaz

Abstract A new solution strategy for topology optimization in 3D elasticity is discussed. This solution strategy uses principles from hierarchical data structures and image analysis to reduce the computational resources necessary to solve large-scale topology optimization problems. The savings in computational resources result from successive use of increasingly detailed hierarchical models starting from a coarse approximation. These models, stored using octree data structures, are used to determine the finite element discretization at a given hierarchy. Through the use of the hierarchical models, large-scale topology optimization problems in 3D elasticity may be solved on desktop workstations.


Author(s):  
C.L. Woodcock

Despite the potential of the technique, electron tomography has yet to be widely used by biologists. This is in part related to the rather daunting list of equipment and expertise that are required. Thanks to continuing advances in theory and instrumentation, tomography is now more feasible for the non-specialist. One barrier that has essentially disappeared is the expense of computational resources. In view of this progress, it is time to give more attention to practical issues that need to be considered when embarking on a tomographic project. The following recommendations and comments are derived from experience gained during two long-term collaborative projects.Tomographic reconstruction results in a three dimensional description of an individual EM specimen, most commonly a section, and is therefore applicable to problems in which ultrastructural details within the thickness of the specimen are obscured in single micrographs. Information that can be recovered using tomography includes the 3D shape of particles, and the arrangement and dispostion of overlapping fibrous and membranous structures.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 129
Author(s):  
Yuan Li ◽  
Ni Zhang ◽  
Yuejiao Gong ◽  
Wentao Mao ◽  
Shiguang Zhang

Compared with continuous elements, discontinuous elements advance in processing the discontinuity of physical variables at corner points and discretized models with complex boundaries. However, the computational accuracy of discontinuous elements is sensitive to the positions of element nodes. To reduce the side effect of the node position on the results, this paper proposes employing partially discontinuous elements to compute the time-domain boundary integral equation of 3D elastodynamics. Using the partially discontinuous element, the nodes located at the corner points will be shrunk into the element, whereas the nodes at the non-corner points remain unchanged. As such, a discrete model that is continuous on surfaces and discontinuous between adjacent surfaces can be generated. First, we present a numerical integration scheme of the partially discontinuous element. For the singular integral, an improved element subdivision method is proposed to reduce the side effect of the time step on the integral accuracy. Then, the effectiveness of the proposed method is verified by two numerical examples. Meanwhile, we study the influence of the positions of the nodes on the stability and accuracy of the computation results by cases. Finally, the recommended value range of the inward shrink ratio of the element nodes is provided.


Sign in / Sign up

Export Citation Format

Share Document