scholarly journals Investigating the Compressive Strength Properties of Concrete Using Some Common Ghanaian Ordinary Portland Cements

2021 ◽  
Vol 6 (2) ◽  
pp. 154-166
Author(s):  
K. S Akorli ◽  
K Danso ◽  
J Ayarkwa ◽  
A Acheampong

In a general sense, concrete is made of cementitious material, aggregates and water but the mix productivity is one issues that affect the amount of strength concrete developed. The concrete mix productivity is a direct function of the amount and quality of the cementitious material. The commonest cementitious material used for concrete in Ghana like other countries in the world is the Ordinary Portland Cement. The research sort to investigate the compressive strength properties of concrete made from some common Ghanaian Ordinary Portland Cement brands mostly used in the countries construction industries. The research strategy adopted was experimental. The research was a cross –sectional studies and used laboratory tests to get information on all cements. Cement grade 42.5N, 42.5R and 32.5R were used. A total of one – hundred and eight (108) concrete cubes were made from nine different brands of Ordinary Portland Cement with a mix design of 1:2:4. No admixtures were used in the mix. It was established that, Ordinary Portland Cement Brand E of grade 42.5R has the highest compressive strength after 28 days. Some of the cement brand with grade 32.5R developed better strength than that of grade 42.5R. Based on the experiment conducted, it can be concluded that for the C15 (1:2:4) and C20 compressive strength as per IS 456:2000, Ordinary Portland Cement Brand E and G of grade 42.5R and Ordinary Portland Cement Brand H and J of grade of 32.5R satisfactory meets the requirement. It implies that some of the Ghanaians Portland Cement developed a satisfactory compressive strength and meets the minimum strength attainment after 28 days’ which is 15 N/mm2. Based on the result, it is recommended that Ordinary Portland Cement Brand E of grade 42.5R should be used for most concrete production and Ordinary Portland Cement Brand J of grade 32.5R can also be used for concrete work in the absence of E 42.5R.   Citation: Akorli, K. S., Danso, K., Ayarkwa, J. and Acheampong, A. (2021). Investigating the Compressive Strength Properties of Concrete Using Some Common Ghanaian Ordinary Portland Cements. International Journal of Technology and Management Research (IJTMR), Vol. 6 (1): Pp.154-166.[Received: March 13, 2021Accepted: September 1, 2021

2017 ◽  
Vol 67 (325) ◽  
pp. 111 ◽  
Author(s):  
D. Burgos ◽  
A. Guzmán ◽  
K. M.A. Hossain ◽  
S. Delvasto

This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


2013 ◽  
Vol 6 (1) ◽  
pp. 50-61
Author(s):  
Amer M. Ibrahem ◽  
Shakir A. Al-Mishhadani ◽  
Zeinab H.Naji

This investigation aimed to study the effect of nano metakaolin ( NMK ) on some properties (compressive strength ,splitting tensile strength & water absorption ) of concrete. The nano metakaolin (NMK) was prepared by thermal activation of kaolin clay for 2 hours at 750 Ċ. The cement used in this investigation consists of ordinary Portland cement (OPC). The OPC was partially substituted by NMK of ( 3, 5 & 10%) by weight of cement. The C45 concrete was prepared , using water/cement ratio ( W/c) of (0.53) .The Water absorption was tested at 28 days while the tests (compressive strength ,splitting tensile strength) were tested at ages of (7, 28, 60,& 90) days . The compressive strength and splitting tensile strength of concrete with NMK were higher than that of reference concrete with the same W/c ratio.The improvement in the compressive strength when using NMK was (42.2, 55.8 , 63.1% ) at age 28 days for ( 3%, 5%, &10% ) replacement of NMK respectively whereas the improvement in the splitting tensile strength was (0% , 36% & 46.8 %) at age of 28 days when using (3%, 5%, &10% ) NMK respectively. The improvement in the water absorption was (16.6%, 21.79%, &25.6 ) when using (3, 5, &10% )NMK.


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph Mwiti Marangu ◽  
Joseph Karanja Thiong’o ◽  
Jackson Muthengia Wachira

Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC) at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC), and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp) were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.


2021 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Marwa Saadi Mhmood

AbstractA quaternary supplementary cementitious materials as partial replacement of ordinary Portland cement decreases CO2 emission. This paper has investigated the properties of mortars made from different quaternary blends of wood ash, steel slag powder and glass powder with ordinary Portland cement at different replacement levels of 0, 24, 25, and 30% by weight of the binder. The blended mortar mixtures tested for flow, compressive strength and density. The results showed that the flow of mortars is decreased with the combined use of steel slag powder, glass powder, and wood ash compared with control mix. Compressive strength reduced with the combination of steel slag powder, glass powder and wood ash but this reduction effects is acceptable especially at 24% replacement contain super-plasticizer compared with the ecological benefit.


Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Gökhan Kaplan ◽  
Hasbi Yaprak ◽  
Selçuk Memiş ◽  
Abdoslam Alnkaa

The use of mineral admixtures and industrial waste as a replacement for Portland cement is recognized widely for its energy efficiency along with reduced CO2 emissions. The use of materials such as fly ash, blast-furnace slag or limestone powder in concrete production makes this process a sustainable one. This study explored a number of hardened concrete properties, such as compressive strength, ultrasonic pulse velocity, dynamic elasticity modulus, water absorption and depth of penetration under varying curing conditions having produced concrete samples using Portland cement (PC), slag cement (SC) and limestone cement (LC). The samples were produced at 0.63 and 0.70 w/c (water/cement) ratios. Hardened concrete samples were then cured under three conditions, namely standard (W), open air (A) and sealed plastic bag (B). Although it was found that the early-age strength of slag cement was lower, it was improved significantly on 90th day. In terms of the effect of curing conditions on compressive strength, cure W offered the highest compressive strength, as expected, while cure A offered slightly lower compressive strength levels. An increase in the w/c ratio was found to have a negative impact on pozzolanic reactions, which resulted in poor hardened concrete properties. Furthermore, carbonation effect was found to have positive effects on some of the concrete properties, and it was observed to have improved the depth of water penetration. Moreover, it was possible to estimate the compressive strength with high precision using artificial neural networks (ANN). The values of the slopes of the regression lines for training, validating and testing datasets were 0.9881, 0.9885 and 0.9776, respectively. This indicates the high accuracy of the developed model as well as a good correlation between the predicted compressive strength values and the experimental (measured) ones.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document