Study on Waterproof and Water-Resistant Properties of Gypsum

2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.

2014 ◽  
Vol 548-549 ◽  
pp. 1659-1662
Author(s):  
Chuan Wei Du ◽  
Guo Zhong Li

The ordinary Portland cement was used to prepare foamed cement by the chemical foaming method. In this paper, the effect of superplasticizer on the water absorption and softening coefficient of foamed cement has been studied. The results show that the superplasticizer could improve foam structure, reduce the water absorption, and enhance the compressive strength and softening coefficient. The water resistance could be improved. When the dosage of superplasticizer was 0.3% (the quality of cement), compared with blank sample, the water absorption reduced 27.9%. When the softening coefficient was 0.68, softening coefficient increased 19.2%. The action mechanism of superplasticizer has been explored.


2013 ◽  
Vol 6 (1) ◽  
pp. 50-61
Author(s):  
Amer M. Ibrahem ◽  
Shakir A. Al-Mishhadani ◽  
Zeinab H.Naji

This investigation aimed to study the effect of nano metakaolin ( NMK ) on some properties (compressive strength ,splitting tensile strength & water absorption ) of concrete. The nano metakaolin (NMK) was prepared by thermal activation of kaolin clay for 2 hours at 750 Ċ. The cement used in this investigation consists of ordinary Portland cement (OPC). The OPC was partially substituted by NMK of ( 3, 5 & 10%) by weight of cement. The C45 concrete was prepared , using water/cement ratio ( W/c) of (0.53) .The Water absorption was tested at 28 days while the tests (compressive strength ,splitting tensile strength) were tested at ages of (7, 28, 60,& 90) days . The compressive strength and splitting tensile strength of concrete with NMK were higher than that of reference concrete with the same W/c ratio.The improvement in the compressive strength when using NMK was (42.2, 55.8 , 63.1% ) at age 28 days for ( 3%, 5%, &10% ) replacement of NMK respectively whereas the improvement in the splitting tensile strength was (0% , 36% & 46.8 %) at age of 28 days when using (3%, 5%, &10% ) NMK respectively. The improvement in the water absorption was (16.6%, 21.79%, &25.6 ) when using (3, 5, &10% )NMK.


Author(s):  
Nguyen Van Chinh

Drying shrinkage is the main cause of early age cracking of concrete and mortar. A wide range of research has been conducted to reduce the drying shrinkage, including using fibres or chemical admixtures. This paper investigated the effect of shrinkage reducing admixture on the flexural strength, compressive strength, drying shrinkage, water absorption and porosity of mortar. The mix compositions were ordinary Portland cement (OPC) : sand : liquid = 1: 1: 0.38 in which liquid consisted of water and shrinkage reducing admixture (SRA). SRA was used at the proportions of 2%, 4%, and 7% by weight of cement. The test results show that SRA reduces the flexural and compressive strengths of mortar. The reduction in flexural strength and compressive strength at 28 days is 14% and 25%, respectively at 7% SRA dosage. In addition, SRA significantly reduces the drying shrinkage and water absorption of mortar. At 7% SRA dosage, the drying shrinkage at 53 days is reduced by 60% while the water absorption rate at 24 hours is reduced by 54%. However, SRA has a minor effect on the pore size distribution, effective porosity, and cumulative intrusion volume of mortar.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2013 ◽  
Vol 327 ◽  
pp. 40-43
Author(s):  
Xiao Long Li ◽  
Guo Zhong Li

The ordinary portland cement was used to prepare foamed cement insulation materials by physical foaming method. The influence of different process of fiber added to the foamed cement insulation materials on its performance was studied and the optimum mix ratio of raw materials was determined. The results showed that the glass fire could be evenly dispersed in the slurry by dry adding technology and got better enhanced effect. When the dosage of glass fire was 0.9%, the performance of the foamed cement material as follows: dry density of 318 kg/m3, 3d flexural strength of 0.61MPa, 3d compressive strength of 1.05MPa, thermal conductivity of 0.065W/(m·k). The reinforce mechanism of glass fire was explored.


2021 ◽  
Vol 39 (4A) ◽  
pp. 668-674
Author(s):  
Wasan I. Khalіl ◽  
Qaіs J. Frayyeh ◽  
Haider Abed

In this research, a study is made on the Pervious Geopolymer Concrete (PGC), which is based on localmaterial(Metakaolin). The inclusion of Ordinary Portland Cement (OPC) as a partial substitute for Metakaolin (MK) for the production of (PGCs) has also been investigated. Pervious Geopolymer concrete was outputted from the local Metakaolin (MK), and ordinary Portland cement (OPC) as a partial substitute by weight of MK and silicate of sodium (Na2SiO3) and hydroxide of sodium (NaOH) solution. All PGC samples were cured after 24 hours from casting for five hours at a degree of the temperature of 50 ° C, then the testingafter 28 days. The compressive-strength, total content of voids, the strength of bending, dry-density, and thermal-conductivity of pervious Geopolymer concrete were examined. The mechanicalresults of testing ranged from (11.03 and 2.25) to (14.3 and 2.75) MPa for compressive-strength and flexural strength respectively.


Activated Slag (AAS) and Fly Ash (FA) based geopolymer concrete a new blended alkali-activated concrete that has been progressively studied over the past years because of its environmental benefits superior engineering properties. Geopolymer has many favorable characteristics in comparison to Ordinary Portland Cement. Many base materials could be utilized to make geopolymer with the convenient concentration of activator solution. In this study, the experimental program composed of two phases; phase on divided into four groups; Group one deliberated the effect of sodium hydroxide molarity and different curing condition on compressive strength. Group two studied the effect of alkali activated solution (NaOH and Na2SiO3) content on compressive strength and workability. The effect of sand replacement with slag on compressive strength and workability was explained in group three. Group four studied the effect of slag replacement with several base materials Fly Ash (FA), Ordinary Portland Cement (OPC), pulverized Red Brick (PRB), and Meta Kaolin (MK). Phase two contains three mixtures from phase one which had the highest compressive strength. For each mixture, the fresh concrete test was air content. In addition the hardened concrete tests were the compressive strength at 3, 7, 28, 90, 180, and 365 days, the flexural strength at 28, 90, and 365 days, and the young's modulus at 28, 90, and 365 days. Moreover; the three mixtures were exposed to elevated temperature at 100oC, 300oC, and 600oC to study the effect of elevated temperature on compressive and flexural strength.


2021 ◽  
Vol 47 (2) ◽  
pp. 216-224
Author(s):  
Noorafizah Binti Murshid ◽  
Nor Amani Filzah Binti Mohd Kamil ◽  
Aeslina Abdul Kadir ◽  
Noor Faiza Binti Roslee ◽  
Abdul Rahim Jalil

In Malaysia, the current practise in treatment of petroleum sludge (PS) is by using incineration and the ash produce required further treatment for safely disposal into landfill. This process require high cost and treatment of raw sludge by using solidification/stabilization method was introduce. In this study, ordinary Portland cement was used as binder. This study focuses on physical properties (compressive strength, density test and water absorption) of S/S matrices and leaching behaviour (SPLP). Results shows adds up to of 30% PS gives results on strength which comply with minimum landfill dispose limit. Correlation between strength and density in regression coefficient of 80.99% and correlation between strength and water absorption shows strong regression of 93.12%. Leaching behaviours on 28 th day of curing showed the similar trend as on 7th day of curing. All heavy metals concentration in leaching test were below the USEPA standard except for Nickel and Chromium. Even though these two metals were exceeded the standard, Portland cement was capable to encapsulate Ni and Cr in mixture and reduce the concentration of 87% and 69% (PS 40%), respectively, compare to concentration in raw sludge. As, conclusion S/S method can be an alternative disposal method for raw sludge.


2020 ◽  
Vol 857 ◽  
pp. 83-88
Author(s):  
Ikram F. Ahmed Al-Mulla ◽  
Ammar S. Al-Rihimy ◽  
Mushriq F. Al-Shamaa

From the sustainability point of view a combination of using water absorption polymer balls in concrete mix produce from Portland limestone cement (IL) is worth to be perceived. Compressive strength and drying shrinkage behavior for the mixes of concrete prepared by Ordinary Portland Cement (O.P.C) and Portland limestone cement (IL) were investigated in this research. Water absorbent polymer balls (WAPB) are innovative module in producing building materials due to the internal curing which eliminates autogenous shrinkage, enhances the strength at early age, improve the durability, give higher compressive strength at early age, and reduce the effect of insufficient external curing. Polymer balls (WAPB) had been used in the mixes of this research to provide good progress in compressive strength with time. Water absorption polymer balls have the ability to absorb water and after usage in concrete it will spill it out and shrink leaving voids of their own diameter before shrinking that lead to provide internal curing. The required quantity of water for the mixes were reduced due to the addition of water from the absorption polymers. Mixes produced from Portland limestone cement in this research show drying shrinkage results and compressive strength results lower than mixes made from ordinary Portland cement.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jijo James ◽  
P. Kasinatha Pandian ◽  
K. Deepika ◽  
J. Manikanda Venkatesh ◽  
V. Manikandan ◽  
...  

The study involved investigating the performance of ordinary Portland cement (OPC) stabilized soil blocks amended with sugarcane bagasse ash (SBA). Locally available soil was tested for its properties and characterized as clay of medium plasticity. This soil was stabilized using 4% and 10% OPC for manufacture of blocks of size 19 cm × 9 cm × 9 cm. The blocks were admixed with 4%, 6%, and 8% SBA by weight of dry soil during casting, with plain OPC stabilized blocks acting as control. All blocks were cast to one target density and water content followed by moist curing for a period of 28 days. They were then subjected to compressive strength, water absorption, and efflorescence tests in accordance with Bureau of Indian standards (BIS) specifications. The results of the tests indicated that OPC stabilization resulted in blocks that met the specifications of BIS. Addition of SBA increased the compressive strength of the blocks and slightly increased the water absorption but still met the standard requirement of BIS code. It is concluded that addition of SBA to OPC in stabilized block manufacture was capable of producing stabilized blocks at reduced OPC content that met the minimum required standards.


Sign in / Sign up

Export Citation Format

Share Document