scholarly journals Impact of Flood on Dynamics of Mimosa pigra Populations in Affected Kelantan River Basin

2017 ◽  
Vol 5 (2) ◽  
pp. 58-61
Author(s):  
Muhammad Zharif Jasni ◽  
Noor Janatun Naim Jemali ◽  
Syafinie Abdul Majid

Kelantan is one of the east coast states of Malaysia, which has faced yearly flooding catastropheespecially during north-east-monsoon season. Most of the land use from upstream to downstreamof Kelantan River Basin was affected after December 2014 when the worst flood was recorded fordecades. Due to the immense flood, Mimosa pigra is spreading forming dense thickets belt alongthe riparian vegetation area. It has transformed the river water regime. M. pigra is identified as theworst invasive species in Malaysia and caused massive threat to riverine ecosystem. It’sconsidered to be a colonizer of mainly wetland and seasonally flooded areas. The dispersalprocess by which this rapid colonization was achieved has yet to be fully documented. The studywas done in three sampling areas along Kelantan river basin (upstream, downstream, outfall)focusing on the distribution of M. pigra after the recent flood. Based on Landsat TM imageclassification analysis and ground thruting, result showed 60% (upstream), 40% (downstream)and 70% (outfall) of accuracy assessment respectively. For each of the 30 sampled point (a 7.5mradius circle), M. pigra has covered an average of 23.04% of the area with a total of 2,309.58m2/ha.

2007 ◽  
Vol 18 (4) ◽  
pp. 385-406 ◽  
Author(s):  
Barbara L. Stark ◽  
Alanna Ossa

Urban settlement in the western lower Papaloapan River basin in the Gulf lowlands was dispersed and likely employed intensive gardening near domiciles. Land surrounding homes also may have played a symbolic role in these agrarian societies. Water works—formal ponds associated with temple platforms and other prominent structures as well as with many residential mounds—support the idea of symbolic as well as practical functions in land use around buildings. Dispersed occupation occurs in low elevations suited to recessional planting, a technique that takes advantage of dry season ground moisture in low areas where rain and flood waters recede as the water table drops. We analyze elevational zones to show greater settlement density in the low-lying Blanco River delta than in higher elevations upriver. Analysis of distances between archaeological residences and wetlands and drainages shows that residences generally were close to seasonally flooded areas. We also highlight anthropogenic qualities in the alluvial landscape, offering a land use perspective distinct from other views of agricultural intensification. The settlement pattern is compatible with Mesoamerican forms of urbanism.


Author(s):  
H.Y. Abdul

Over the years, flood is one of the natural hazards which occur all over the world and it is critical to be controlled through proper management. Flood in Kelantan is mainly caused by heavy rainfall brought by the Northeast monsoon starting from November to March every year. It is categorized as annual flood as it occurs every year during the Monsoon season. Severe flood events in Kelantan, Malaysia cause damage to both life and property every year and understanding landscape structure changes is very important for planners and decision makers for future land use planning and management. This research aims to quantify the landscape structure near to Kelantan River basin during the flood event using integrated approach of remote sensing (RS), geographic information system (GIS) technique and landscape ecological approach. As a result, this study provide new knowledge on landscape structure that contributes to understand the impact of flood events and provide the best ways to mitigate flooding for helping to protect biodiversity habitat and dwellers. As conclusions, this kind of study will give more benefits to various stakeholders such as Department of Irrigation and Drainage, Department of Environment, state government, fisherman and communities.


Author(s):  
Amin Beiranvand Pour ◽  
Mazlan Hashim

Abstract. Identification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. The data were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units. The N-S, NE-SW and NNE-SSW lineament trends and dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topography regions. Numerous landslide points were located in rectangular drainage system that associated with topographic slope of metamorphic and quaternary rock units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydro-geological hazards. Geo-hazard mitigation programmes could be conducted in the landslide recurrence regions and flooded areas for reducing natural catastrophes leading to loss of financial investments and death in the Kelantan river basin. In this investigation, PALSAR-2 has proven to be successful advanced earth observation satellite data for disasters monitoring in tropical environments.


2017 ◽  
Vol 17 (7) ◽  
pp. 1285-1303 ◽  
Author(s):  
Amin Beiranvand Pour ◽  
Mazlan Hashim

Abstract. Identification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan River basin, Peninsular Malaysia. Flooding and subsequent landslide occurrences generated significant damage to livestock, agricultural produce, homes and businesses in the Kelantan River basin. In this study, remote sensing data from the recently launched Landsat-8 and Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on board the Advanced Land Observing Satellite-2 (ALOS-2) were used to map geologic structural and topographical features in the Kelantan River basin for identification of high potential risk and susceptible zones for landslides and flooding areas. The data were processed for a comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. The analytical hierarchy process (AHP) approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index (NDVI), land cover, distance to drainage, precipitation, distance to fault and distance to the road were extracted from remote sensing satellite data and fieldwork to apply the AHP approach. Directional convolution filters were applied to ALOS-2 data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results indicate that lineament occurrence at regional scale was mainly linked to the N–S trending of the Bentong–Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. The combination of different polarization channels produced image maps that contain important information related to water bodies, wetlands and lithological units. The N–S, NE–SW and NNE–SSW lineament trends and dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan River basin. The analysis of field investigation data indicates that many of flooded areas were associated with high potential risk zones for hydrogeological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topographic regions. Numerous landslide points were located in a rectangular drainage system that is associated with a topographic slope of metamorphic and quaternary rock units. Consequently, structural and topographical geology maps were produced for Kelantan River basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydrogeological hazards. Geohazard mitigation programs could be conducted in the landslide recurrence regions and flooded areas to reduce natural catastrophes leading to loss of life and financial investments in the Kelantan River basin. In this investigation, Landsat-8 and ALOS-2 have proven to successfully provide advanced Earth observation satellite data for disaster monitoring in tropical environments.


Think India ◽  
2019 ◽  
Vol 22 (2) ◽  
pp. 296-304
Author(s):  
Biplab Tripathy ◽  
Tanmoy Mondal

India is a subcontinent, there huge no of people lived in river basin area. In India there more or less 80% of people directly or indirectly depend on River. Ganga, Brahamputra in North and North East and Mahanadi, Govabori, Krishna, Kaveri, Narmoda, Tapti, Mahi in South are the major river basin in India. There each year due to flood and high tide lots of people are suffered in river basin region in India. These problems destroy the socio economic peace and hope of the people in river basin. There peoples are continuously suffered by lots of difficulties in sort or in long term basis. Few basin regions are always in high alert at the time of monsoon seasons. Sometime due to over migration from basin area, it becomes empty and creates an ultimate loss of resources in India and causes a dis-balance situation in this area.


Palaeobotany ◽  
2019 ◽  
Vol 10 ◽  
pp. 13-179
Author(s):  
L. B. Golovneva

The Chingandzha flora comes from the volcanic-sedimentary deposits of the Chingandzha Formation (the Okhotsk-Chukotka volcanic belt, North-East of Russia). The main localities of the Chingandzha flora are situated in the Omsukchan district of the Magadan Region: on the Tap River (basin of the middle course of the Viliga River), on the Kananyga River, near the mouth of the Rond Creek, and in the middle reaches of the Chingandzha River (basin of the Tumany River). The Chingandzha flora includes 23 genera and 33 species. Two new species (Taxodium viligense Golovn. and Cupressinocladus shelikhovii Golovn.) are described, and two new combinations (Arctopteris ochotica (Samyl.) Golovn. and Dalembia kryshtofovichii (Samyl.) Golovn.) are created. The Chingandzha flora consists of liverworts, horsetails, ferns, seed ferns, ginkgoaleans, conifers, and angiosperms. The main genera are Arctop teris, Osmunda, Coniopteris, Cladophlebis, Ginkgo, Sagenoptepis, Sequoia, Taxodium, Metasequoia, Cupressinocladus, Protophyllocladus, Pseudoprotophyllum, Trochodendroides, Dalembia, Menispermites, Araliaephyllum, Quereuxia. The Chingandzha flora is distinct from other floras of the Okhotsk-Chukotka volcanic belt (OCVB) in predominance of flowering plants and in absence of the Early Cretaceous relicts such as Podozamites, Phoenicopsis and cycadophytes. According to its systematic composition and palaeoecological features, the Chingandzha flora is similar to the Coniacian Kaivayam and Tylpegyrgynay floras of the North-East of Russia, which were distributed at coastal lowlands east of the mountain ridges of the OCVB. Therefore, the age of the Chingandzha flora is determined as the Coniacian. This flora is assigned to the Kaivayam phase of the flora evolution and to the Anadyr Province of the Siberian-Canadian floristic realm. The Chingandzha flora is correlated with the Coniacian Aleeky flora from the Viliga-Tumany interfluve area and with other Coniacian floras of the OCVB: the Chaun flora of the Central Chukotka, the Kholchan flora of the Magadan Region and the Ul’ya flora of the Ul’ya Depression.


2020 ◽  
Vol 9 (4(73)) ◽  
pp. 29-33
Author(s):  
N.S. Bagdaryyn

The article continues the author's research on the toponymy of the North-East of the Sakha Republic, in particular the Kolyma river basin, in the aspect of the interaction of related and unrelated languages. The relevance of this work is defined in the description of local geographical terminology of Yukagir origin, as a valuable and important material in the further study of toponymy of the region. For the first time, the toponymy of the Kolyma river basin becomes the object of sampling and linguistic analysis of toponyms with local geographical terms of Yukagir origin in order to identify and analyze them linguistically. The research was carried out by comparative method, word formation, structural, lexical and semantic analysis. As a result of the research, phonetic and morphological features are revealed, the formation of local geographical terms and geographical names of Yukagir origin is outlined, and previously unrecorded semantic shifts and dialectisms are revealed. The most active in the formation of terms and toponyms is the geographical term iилil / eҕal 'coast‘, which is justified by the representation of the Yukagirs’ coast' home, housing


Sign in / Sign up

Export Citation Format

Share Document