Modeling of Single-Axis Rupture Process Fiber Totals with Regard to their Properties on a Copper-Type Machine

Author(s):  
A.V. Orlov ◽  
E.L. Pashin
Keyword(s):  
Alloy Digest ◽  
1997 ◽  
Vol 46 (6) ◽  

Abstract Project 70 stainless type 303 and Project 7000 stainless type 303 are free-machining stainless steels of the austenitic chromium-nickel type. They offer significantly improved machinability and longer tool life. These steels are suited particularly for automatic bar-machine and Swiss-type machine operations where longer tool life results in more productive machining time. Applications include shafts, valve bodies, valves, valve trim, and fittings. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-409. Producer or source: Carpenter. Originally published June 1982, revised June 1997.


2015 ◽  
pp. 758-760
Author(s):  
Romain Delecourt ◽  
Loïc Marsal

Maguin (France) is still active in the application of pulsed electric field (PEF) technology. After having carried out successful tests on a 10 t/h pilot screw-type machine on sugar beet cossettes, a new application system based on a roller technology has been developed. This technology allows a wide range of application due to its flexibility with flowrates and materials. A variety of process schemes are proposed to ensure the best performance of the PEF technology.


1993 ◽  
Vol 20 (18) ◽  
pp. 1907-1910 ◽  
Author(s):  
L. E. Jones ◽  
S. E. Hough ◽  
D. V. Helmberger
Keyword(s):  

2001 ◽  
Vol 14 (6) ◽  
pp. 701-704
Author(s):  
Xue-zhong Chen ◽  
Zeng-xi Gai ◽  
Shi-yong Zhou ◽  
Tie-shuan Guo ◽  
Ling-ren Zhu

1995 ◽  
Vol 85 (3) ◽  
pp. 716-735 ◽  
Author(s):  
John F. Cassidy ◽  
Garry C. Rogers

Abstract On 6 April 1992, a magnitude 6.8 (MS) earthquake occurred in the triple-junction region at the northern end of the Cascadia subduction zone. This was the largest earthquake in at least 75 yr to occur along the 110-km-long Revere-Dellwood-Wilson (RDW) transform fault and the first large earthquake in this region recorded by modern broadband digital seismic networks. It thus provides an opportunity to examine the rupture process along a young (<2 Ma) oceanic transform fault and to gain better insight into the tectonics of this triple-junction region. We have investigated the source parameters and the rupture process of this earthquake by modeling broadband body waves and long-period surface waves and by accurately locating the mainshock and the first 10 days of aftershocks using a well-located “calibration” event recorded during an ocean-bottom seismometer survey. Analysis of P and SH waveforms reveals that this was a complex rupture sequence consisting of three strike-slip subevents in 12 sec. The initial rupture occurred 5 to 6 km to the SW of the seafloor trace of the RDW fault at 50.55° N, 130.46° W. The dominant subevent occurred 2 to 3 sec later and 4.3 km beneath the seafloor trace of the RDW fault, and a third subevent occurred 5 sec later, 18 km to the NNW, suggesting a northwestward propagating rupture. The aftershock sequence extended along a 60- to 70-km-long segment of the RDW fault, with the bulk of the activity concentrated ∼30 to 40 km to the NNW of the epicenter, consistent with this interpretation. The well-constrained mechanism of the initial rupture (strike/dip/slip 339°/90°/−168°) and of the largest aftershock (165°/80°/170°) are rotated 15° to 20° clockwise relative to the seafloor trace of the RDW fault but are parallel to the Pacific/North America relative plate motion vector. In contrast, the mechanisms of the dominant subevent (326°/87°/−172°), and the long-period solution derived from surface waves aligns with the RDW fault. This suggests that small earthquakes (M < 6) in this area occur along faults that are optimally aligned with respect to the regional stress field, whereas large earthquakes, involving tens of kilometers of rupture, activate the RDW fault. For the mainshock, we estimate a seismic moment (from surface waves) of 1.0 × 1026 dyne-cm, a stress drop of 60 bars, and an average slip of 1.2 m. This represents only 21 yr of strain accumulation, implying that there is either a significant amount of aseismic slip along the RDW fault or that much of the strain accumulation manifests itself as deformation within the Dellwood and Winona blocks or along the continental margin.


2021 ◽  
Author(s):  
Elisa Buforn ◽  
Carmen Pro ◽  
Hernando Tavera ◽  
Agustin Udias ◽  
Maurizio Mattesini

<p>We analyze the differences in the rupture process for twelve very deep earthquakes (h>500 km) at the Peruvian-Brazilian subduction zone. These earthquakes are produced by the contact between the Nazca and the South America Plates. We have estimated the focal mechanism from teleseismic waveforms, using the slip inversion over the rupture plane, testing rupture velocities ranging from 2.5 km/s to 4.5 km/s, and analyzing the slip distribution for each  rupture velocity. The selected 12 earthquakes have occurred in the period 1994- 2016, with magnitudes between 5.9 and 8.2 and focal depth 500- 700 km. They can be separated in two groups attending to their epicentral location. The first group is formed by 9 events located, in the Peruvian-Brazil border, with epicenters following a NNW-SSE alignment, parallel to the trench. Their focal mechanisms present solutions of normal faulting with planes oriented in NS direction, dipping about 45 degrees and with vertical pressure axis. The second group is formed by three earthquakes located to the south of the first group in northern Bolivia. Their mechanisms show dip-slip motion with a near vertical plane, oriented in NW-SE direction and the pressure axis dipping 45º to the NE. The moment rate functions correspond to single ruptures with time durations from 6s to 12s, with the exception of the large 1994 Bolivian earthquake (Mw = 8.2) which presents a complex and longer STF. The different mechanisms for the two groups of earthquakes confirm the different dip of the subducting Nazca plate at the two areas, with the steeper part at the southern one.  </p>


Sign in / Sign up

Export Citation Format

Share Document