Granulomatosis linfomatoide cerebral, con clonalidad del receptor de células T. A propósito de un caso.

2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Dr. Raúl Rodríguez ◽  
Dra. Esther Nimchinsky ◽  
Dr. James K Liu ◽  
Dra. Ada Baisre de León

Lymphomatoid granulomatosis (LG) is a rare, angioinvasive and angiodestructive, EBV-associated B cell lymphoproliferative disorder, which occurs in the setting of immunosuppression. We present the peculiar case of a 67-year-old lady, with systemic lupus erythematous (SLE) and lupus nephritis, on immunosuppressant therapy, who developed a new onset of seizures and was found to have multiple ring enhancing lesions on brain MRI. A biopsy of one of the lesions revealed lymphomatoid granulomatosis, grade I. DNA analysis of the neoplasm, showed T-cell receptor gene rearrangement (TRG) and no evidence of B-cell rearrangement, which is an unusual finding. On further examination several lung nodules were identified on a CT scan of the chest, a characteristic of LG. Key words: Cerebral lymphomatoid granulomatosis, T cell clonality, Epstein Bar virus, Immunodeficiency associated B-cell lymphoma

Blood ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 612-615 ◽  
Author(s):  
JE Groopman ◽  
JL Sullivan ◽  
C Mulder ◽  
D Ginsburg ◽  
SH Orkin ◽  
...  

Abstract Lymphoma occurs at increased frequency in patients with the acquired immunodeficiency syndrome (AIDS). We studied, using serologic and molecular techniques, one such lymphoma for (a) evidence of infection with human T lymphotropic virus, type III (HTLV-III), and Epstein-Barr virus (EBV), (b) monoclonal rearrangement of immunoglobulin and T cell receptor genes, and (c) rearrangement of the c-myc oncogene. Immunoglobulin and T cell receptor gene studies demonstrated that the tumor was of monoclonal B cell origin. Similar to cases of Burkitt's lymphoma unrelated to AIDS, there were DNA sequences in the lymphoma that hybridized to EBV-specific probes and demonstrated evidence of c- myc rearrangement. HTLV-III sequences were not detected in the malignant B cells. The pathogenesis of some B cell neoplasms in patients with the syndrome may involve transformation by EBV and deregulation of oncogene expression without direct infection of the malignant B cells by HTLV-III.


Blood ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 612-615
Author(s):  
JE Groopman ◽  
JL Sullivan ◽  
C Mulder ◽  
D Ginsburg ◽  
SH Orkin ◽  
...  

Lymphoma occurs at increased frequency in patients with the acquired immunodeficiency syndrome (AIDS). We studied, using serologic and molecular techniques, one such lymphoma for (a) evidence of infection with human T lymphotropic virus, type III (HTLV-III), and Epstein-Barr virus (EBV), (b) monoclonal rearrangement of immunoglobulin and T cell receptor genes, and (c) rearrangement of the c-myc oncogene. Immunoglobulin and T cell receptor gene studies demonstrated that the tumor was of monoclonal B cell origin. Similar to cases of Burkitt's lymphoma unrelated to AIDS, there were DNA sequences in the lymphoma that hybridized to EBV-specific probes and demonstrated evidence of c- myc rearrangement. HTLV-III sequences were not detected in the malignant B cells. The pathogenesis of some B cell neoplasms in patients with the syndrome may involve transformation by EBV and deregulation of oncogene expression without direct infection of the malignant B cells by HTLV-III.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 340
Author(s):  
Ming Liang Oon ◽  
Jing Quan Lim ◽  
Bernett Lee ◽  
Sai Mun Leong ◽  
Gwyneth Shook-Ting Soon ◽  
...  

T-cell lymphomas arise from a single neoplastic clone and exhibit identical patterns of deletions in T-cell receptor (TCR) genes. Whole genome sequencing (WGS) data represent a treasure trove of information for the development of novel clinical applications. However, the use of WGS to identify clonal T-cell proliferations has not been systematically studied. In this study, based on WGS data, we identified monoclonal rearrangements (MRs) of T-cell receptors (TCR) genes using a novel segmentation algorithm and copy number computation. We evaluated the feasibility of this technique as a marker of T-cell clonality using T-cell lymphomas (TCL, n = 44) and extranodal NK/T-cell lymphomas (ENKTLs, n = 20), and identified 98% of TCLs with one or more TCR gene MRs, against 91% detected using PCR. TCR MRs were absent in all ENKTLs and NK cell lines. Sensitivity-wise, this platform is sufficiently competent, with MRs detected in the majority of samples with tumor content under 25% and it can also distinguish monoallelic from biallelic MRs. Understanding the copy number landscape of TCR using WGS data may engender new diagnostic applications in hematolymphoid pathology, which can be readily adapted to the analysis of B-cell receptor loci for B-cell clonality determination.


2018 ◽  
Vol 10 (1) ◽  
pp. e2018036
Author(s):  
Ashley M Rose ◽  
Leidy Isenalumhe ◽  
Magali VanDenBergh ◽  
Lubomir Sokol

We report five patients with human immunodeficiency virus-1/acquired immunodeficiency syndrome (HIV-1/AIDS) who developed T-cell large granular lymphocytic leukemia (T-LGLL). None of the patients fulfilled criteria for diagnosis of diffuse infiltrative lymphocyte syndrome (DILS) or HIV-associated CD8+ lymphocytosis syndrome at the time of diagnosis of LGLL. The immunophenotype of malignant T-cells was identical in three patients with co-expression of CD3, CD8, CD57, and T-cell receptor (TCR) alpha/beta. Three out of five patients were also diagnosed with clonal disorders of B-cell origin including diffuse large B-cell lymphoma, Burkitt’s lymphoma, and monoclonal gammopathy of undetermined significance (MGUS).  Two patients developed cytopenias due to T-LGLL prompting initiation of therapy. Our study suggests that chronic viral infection with HIV can contribute to evolution of T-LGLL. Clinical and laboratory characteristics of T-LGLL associated with HIV-1/AIDS resemble those of immunocompetent  patients.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4143-4143
Author(s):  
Marvyn T. Koning ◽  
Sander A.J. van der Zeeuw ◽  
Marcelo Navarrete ◽  
Cornelis A.M. van Bergen ◽  
Valeri Nteleah ◽  
...  

Abstract Peptides of the B-cell receptor (BCR) may be presented in HLA molecules and therefore be recognized as epitopes by T cells. Bioinformatic evidence indicates that follicular lymphoma cells are selected against expression of a clonal BCR with a high cumulative predicted binding of BCR-derived peptides to the respective patient's HLA complex (Strothmeyer, Blood 2010). This observation suggests T-cell-mediated immunosurveillance against outgrowth of follicular lymphoma cells according to BCR HLA binding strength. Here, we investigate whether this phenomenon pertains to peripheral B cells in 6 healthy donors: 2 donors homozygous for HLA A01*01 / B08*01, 2 homozygous for HLA A02*01 / B7*02, and 2 donors heterozygous for these alleles. Unbiased representation of full-length V(D)J sequences was considered essential for correct data interpretation. PCR primers annealing to conserved motifs of BCR variable regions (e.g. BIOMED-2 protocol) fail to amplify a fraction of BCR, particularly those modified by somatic hypermutation. Therefore, we developed an improved anchored PCR strategy: cDNA was synthesized from poly(A)-RNA from peripheral blood with primers that anneal to specific Ig constant regions. In the same reaction, the 3' cDNA end is extended by switching to an oligonucleotide template containing an anchor sequence (SMART technology; Clontech). Anchor-tagged cDNA was amplified with a primer annealing to the anchor in combination with a nested constant region-specific reverse primer. Dumbbell adapters were added to the termini of 250 ng of purified PCR products. Circular consensus sequencing of single molecules was performed on the PacBio platform (Pacific Biosciences). Using one SMRT PacBio cell per amplicon, separate sequence libraries were created for μ, γ, κ, and λ BCR transcripts. Sequences covered by at least five reads were selected with SMRT Portal software to obtain >95% of sequences without sequence errors as demonstrated on multiple B-cell lines. Selected sequences were analysed by HighV-QUEST software (Alamyar, Immunome Research 2012). After exclusion of non-BCR sequences and duplicate BCR transcripts, a median of 5318 (range: 670-8752) individual BCR sequences was obtained per library. Binding affinity of nonamers in in-silico-translated BCR were calculated for the 4 HLA alleles by the NetMHC 3.4 algorithm. The fractions of BCR lacking any weak HLA binding peptide (NetMHC IC50 <500nM) within a library were compared between donors positive or negative for any HLA molecule. μ VDJ transcripts without HLA binding peptides were significantly more frequent for all HLA alleles in donors that actually express that particular allele (Table). With the exception of HLA A01*01, similar results were observed for γ transcripts. While the fraction of κ VJ transcripts without an HLA binder was overall higher in HLA A01*01 and B08*01, HLA-positive individuals had higher proportions of non-HLA binding sequences. λ transcripts were less likely to contain HLA binders with respect to HLA B07*02 and B08*01 but not to the HLA A alleles. Analogous analyses were performed for CDR3 regions as annotated by HighV-QUEST plus six amino acids on either flank. In 10 of 16 analyses, CDR3 sequences were less likely to contain an HLA binder in HLA-positive individuals; in three analyses an opposite effect was seen (Table). These results indicate that the peripheral BCR repertoire is shaped by HLA alleles in healthy individuals, most likely by T-cell mediated recognition of BCR peptides. Ongoing studies expand this fundamental finding with respect to the IC50 threshold, the number of nonamers, and additional HLA alleles. Our results warrant investigation of the potential role of HLA-dependent shaping of the BCR repertoire for the immune defense and the development of autoimmune disease and B-cell lymphoma. Table 1V(D)J without HLA binding peptideCDR3 without HLA binding peptideHLADonorμγκλμγΚλ A01*01Positive21%41%61%37%87%90%98%70%Negative16%42%59%38%92%92%96%65%P<0.001n.s.<0.01n.s.<0.001n.s.<0.01<0.001 A02*01Positive6%4%3%32%77%77%77%70%Negative4%1%2%32%75%69%78%78%P<0.001<0.001<0.01n.s.<0.01<0.001n.s.<0.001 B07*02Positive31%13%3%13%79%73%91%96%Negative27%8%2%6%79%69%90%98%P<0.001<0.01<0.01<0.001n.s.<0.05<0.05<0.001 B08*01Positive30%35%64%64%89%87%92%96%Negative14%28%62%61%88%82%90%93%P<0.001<0.001<0.01<0.001<0.01<0.001<0.01<0.001 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1451-1451
Author(s):  
Chao Wang ◽  
Qiang Gong ◽  
Weiwei Zhang ◽  
Javeed Iqbal ◽  
Yang Hu ◽  
...  

Abstract Introduction: Diversity of the T-cell receptor (TCR) repertoire reflects the initial V(D)J recombination events as shaped by selection by self and foreign antigens. Next generation sequencing is a powerful method for profiling the TCR repertoire, including sequences encoding complementarity-determining region 3 (CDR3). Peripheral T-cell lymphoma (PTCL) is a group of malignancies that originate from mature T-cells. T-cell clonality of PTCL is routinely evaluated with a PCR-based method to detect TCR gamma and less frequently beta chain rearrangements using genomic DNA. However, there are limitations with this approach, chief among which is the lack of sequence information. To date, the TCR repertoire of different subtypes of PTCL remains poorly defined. Objective: The purpose of this study was to determine the utility of RNA-seq for assessing T-cell clonality and analyzing the TCR usage in PTCL samples. Methods: We analyzed RNA-seq data from 30 angioimmunoblastic T-cell lymphoma (AITL), 23 Anaplastic large cell lymphoma (ALCL), 10 PTCL-NOS, and 17 NKCL. Data from naïve T cells, TFH cells, and T-effector cells (CD4+ CD45RA− TCRβ+ PD-1lo CXCR5lo PSGL-1hi) were obtained from publicly available resources. Referenced TCR and immunoglobulin transcripts according to the International ImMunoGeneTics Information System (IMGT) database were quantified by Kallisto software. We divided the pattern of Vβ (T-cell receptor beta variable region) into three categories: monoclonal (mono- or bi-allelic), oligoclonal (3-4 dominant clones), and polyclonal. CDR3 sequences were extracted by MiXCR program. PCR of the gamma chain using genomic DNA was utilized to validate the clonality of selected cases. Single nucleotide variants (SNVs) were called from aligned RNA-seq data using Samtools and VarScan 2 programs. Results: Analysis of RNA-seq data identified preferential usage of TCR-Vβ, Dβ (diversity region), and Jβ (joining region), length diversity of CDR3, and usage of nontemplated bases. Dominant clones could be identified by transcriptome sequencing in most cases of AITL (21/30), ALCL (14/23), and PTCL-NOS (7/10). Median CDR3 length is 42 nucleotides (nt) in normal T cells, 41 nt in ALCL, 48 nt in PTCL-NOS, and 44 nt in AITL. In 30 AITL samples, 20 showed monoclonal Vβ with a single peak, and 9 showed polyclonal Vβ. One case had two dominant clones with different CDR3, only one of which was in frame, implying biallelic rearrangements. As many as 3511 clones supported by at least four reads could be detected in polyclonal cases. In monoclonal cases, the dominant clone varied between 11.8% and 92.8% of TCR with Vβ rearrangements. TRBV 20-1, which is the most commonly used segment in normal T cells, is also frequently used in the dominant clones in AITL. The monoclonal AITL cases showed mutation of TET2, RHOA, DNMT3A or IDH2 whereas most of the polyclonal cases were negative or had low VAF mutation suggesting low or absent of tumor infiltrate in the specimen sequenced. There is no obvious correlation of any of the mutations with Vβ usage. Clonal B cell expansion was noted in some AITL samples. The occurrence of a preferential TRBV9 expansion in PTCL-NOS was striking. More than half of ALCL samples (14/23) showed expression of clonal Vβ, but 3/14 dominant clones were out-of-frame. γ chain expression was very low in cells expressing TCRαβ, but both expression levels and clonality were higher in TCRγδ expressing tumors. NKCL did not express significant levels of TCR Vβ or Vγ genes. Discussion/Interpretation: Transcriptome sequencing is a useful tool for understanding the TCR repertoire in T cell lymphoma and for detecting clonality for diagnosis. Clonal, often out-of-frame, Vβ transcripts are detectable in most ALCL cases and preferential TRBV9 usage is found in PTCL-NOS. Disclosures No relevant conflicts of interest to declare.


1989 ◽  
Vol 1 (1) ◽  
pp. 15-22 ◽  
Author(s):  
James K. Park ◽  
Timothy W. McKeithan ◽  
Michelle M. le Beau ◽  
Mitchell A. Bitter ◽  
Wilbur A. Franklin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document