scholarly journals Basic Review: Solubility Enhancement by Using Various Approaches

Author(s):  
Baldha Krunal ◽  
Sanjay Savaliya ◽  
Payal N Vaja ◽  
Dr. Chetan H Borkhtaria

The solubility enhancement process of drugs plays a key role in the formulation development to achieve the bioavailability and therapeutic action of the drug at the target site. About 40% of the new chemical entities identified by pharmaceutical industry screening programs face numerous problems in the formulation and development stage because of poor water solubility and low bioavailability. Drug solubility and bioavailability enhancement are the important challenges in the field of formulation of pharmaceuticals.

Author(s):  
Rabindranath Paul ◽  
Sandip Paul

One major problem in the pharmaceutical industry is the aqueous solubility of newly developed orally administered drug candidates. More than 50 % of the newly developed drug molecules suffer from...


2019 ◽  
Vol 9 (2) ◽  
pp. 583-590 ◽  
Author(s):  
Sandip R. Pawar ◽  
Shashikant D. Barhate

The solubility of a solute is the maximum quantity of solute that can dissolve in a certain quantity of solvent or quantity of solution at a specified temperature. Solubility is one of the important parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. Solubility is essential for the therapeutic effectiveness of the drug, independent of the route of administration. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. Poorly soluble drugs are often a challenging task for formulators in the industry Conventional  approaches  for  enhancement  of  solubility  have  limited  applicability,  especially when  the  drugs  are  poorly  soluble  simultaneously  in  aqueous  and  in  non-aqueous  media. Drug with poor water solubility cause slow dissolution rates, generally show erratic and incomplete absorption leading to low bioavailability when administered orally. Solubilization may be affected by cosolvent water  interaction, micellar solubilization, reduction in  particle  size,  inclusion  complexes,  solid  dispersion,  and  change  in  polymorph.  Some  new technologies  are  also  available  to  increase  the  solubility  like  micro emulsion,  self-emulsifying drug  delivery  system  and  supercritical  fluid  technology. This present review details about the different approaches used for the enhancement of the solubility of poorly water-soluble drugs include particle size reduction, nanonization, pH adjustment, solid dispersion, complexation, co‐solvency, hydrotropy etc. The purpose of this article is to describe the techniques of solubilization for the attainment of effective absorption and improved bioavailability. Keywords: Solubility, Solubility Enhancement, bioavailability, solid dispersion, Solid Dispersion, Solubilization.


2018 ◽  
Vol 8 (5) ◽  
pp. 44-49 ◽  
Author(s):  
SD Mankar ◽  
Punit R. Rach

The solubility behavior of drugs remains one of the most exigent aspects in formulation development. With the advent of combinatorial chemistry and high throughput screening, the number of poorly water soluble compounds has dramatically increased.  Among all the newly discovered chemical entities, about 40-45% drugs fail to reach market due to their poor water solubility. Because of solubility problem, bioavailability of drugs gets affected and hence solubility enhancement becomes necessary. Solid dispersions have attracted considerable interest as an efficient means of improving the dissolution rate and hence the bioavailability of drugs. Therefore, the application of this technique proves to be an important stratagem for pharmaceutical companies. However, the in - depth knowledge of the solid dispersion is desired for the scale up of formulation, from laboratory scale to industrial scale. There are various methods available to improve the solubility of the new drug in which solid dispersion emerged promising. A Solid dispersion generally composed of two components- the drug and the polymer matrix. Hence, this approach is expected to form a basis for the commercialization of many poorly water-soluble and water-insoluble drugs in their solid-dispersion formulations in the near future. This article reviews the various preparation techniques, carriers used, advantages and limitations of solid dispersions and compiles some of the recent advances. Keywords: Bioavailability, Solid Dispersion, Hydrophilic carriers, Polyethylene glycol.


2019 ◽  
Vol 9 (2) ◽  
pp. 542-546 ◽  
Author(s):  
M. Siddik N. Patel ◽  
Mohd Hasib Ahmed ◽  
Mohammad Saqib ◽  
Siraj N Shaikh

Almost 40% of the new chemical entities at present self find out poorly water soluble drugs. Badly water soluble drugs have solubility and dissolution related bioavailability problems. Solubility is one of the most important parameter to give desired concentration of drug in systemic circulation to get its pharmacological response. Orally administered drugs obtained completely absorb only when they show fair solubility in gastric medium and such drugs shows good bioavailability. The solubility and dissolution properties of drugs perform an valuable role in the process of formulation development. Enhancement of solubility of drug is the most challenging job in drug development process. Solubilization may be affected by co solvent water interaction, micellar solubilization, reduction in particle size, inclusion complexes, solid dispersion, and change in polymorph. This review highlight various techniques of solubility enhancement with special emphasis on Chemical modification methods like Salt formation, Co-crystallization, Co-solvency, Hydrotropy, use of novel solubilizer etc along with physical modification techniques. Keywords: Salt formation, Co-crystallization, Solubility, particle technologies, Milling solubility enhancement, Cosolvent, physical and chemical methods.


Author(s):  
Sakshi Minocha ◽  
Dr. Shilpa Pahwa ◽  
Dr. Vandana Arora

Solubility is not the ability to dissolve or thaw a substance; it may happen not only due to dissolution but also because of a chemical reaction. Solubility is the phenomenon of dissolution of solid in liquid phase to provide a homogenous system. Solubility is one of the vital factors for accomplishing desired concentration of drug in systemic circulation for pharmacological response. Low aqueous solubility is the major problem seen with formulation development of new chemical entities as well as for the generic development. With all new discovered chemical entities about 40% drugs are lipophilic and doesn’t shown therapeutic range due to their poor water solubility. Drug with poor water solubility shows slow dissolution rates, incomplete absorption and low bioavailability when taken orally. Drug solubility and bioavailability enhancement are the important in the formulation of pharmaceuticals. The Biopharmaceutics Classification System shows that Class II and IV drugs have low water solubility, poor dissolution, and low bioavailability. This review mentions different approaches used for the enhancement of the solubility of poorly water-soluble drugs that includes particle size reduction, pH adjustment, and solid dispersion. This describes the techniques of solubilizaton for the attainment of effective absorption and improved bioavailability. Keywords: Solubility, BCS classification, Bioavailability, Solid-dispersion.


2019 ◽  
Vol 10 (3) ◽  
pp. 2234-2241
Author(s):  
Manoj K ◽  
Seenivasan P ◽  
Arul K ◽  
Senthil kumar M

The solubility and bioavailability enhancement of poorly water soluble drugs has been a foremost challenge in formulation development. Telmisartan belonging to Angiotension II receptor antagonist, extensively used candidate for the treatment of hypertension possess poor water solubility and bioavailability. Polymer Enriched Bridging Liquid (PEBL) method was adopted here for enhancing the flow properties and solubility of Telmisartan. The techniques involve the incorporation of a hydrophilic polymer, PEG4000 into the bridging liquid during the crystallisation process. The drug content determination suggested the better incorporation of polymer into the crystal aggregates. The FTIR analysis showed the absence of any chemical interaction. The DSC analysis showed a significant reduction in the enthalpy and melting point. The crystallinity of Telmisartan was reduced from 50.789 to 34.655% indicated by the reduction in peak intensity analysis and peak area calculation by X-Ray diffraction. The SEM analysis revealed the spherical nature of crystals resulting in the improvement of flow properties. The saturation solubility analysis revealed that the formulation STPG03 has shown 25.86 fold increase in the solubility in water and 24.217 folds in pH7.5 Phosphate buffer. The in vitro dissolution data also supported the results of solubility analysis. Hence PEBL technique provided a better alternative to enhance the flow characteristics, solubility, dissolution and bioavailability of Telmisartan.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ketan T. Savjani ◽  
Anuradha K. Gajjar ◽  
Jignasa K. Savjani

Solubility, the phenomenon of dissolution of solute in solvent to give a homogenous system, is one of the important parameters to achieve desired concentration of drug in systemic circulation for desired (anticipated) pharmacological response. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. More than 40% NCEs (new chemical entities) developed in pharmaceutical industry are practically insoluble in water. Solubility is a major challenge for formulation scientist. Any drug to be absorbed must be present in the form of solution at the site of absorption. Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth. Selection of solubility improving method depends on drug property, site of absorption, and required dosage form characteristics.


2020 ◽  
Vol 10 (4) ◽  
pp. 255-277
Author(s):  
Shashank Chaturvedi ◽  
Raghav Mishra

: Formulation development of BCS Class II and IV drugs is a challenging task due to their poor solubility and permeability issue. : An extensive literature survey was conducted to explore the relevant pharmaceutical approaches that have been used for solving the issue of poor solubility and permeability in the recent past. : It has been found that a plethora of approaches have been investigated for addressing the issue of poor solubility and or permeability. These include physical modifications (modification of crystal habit, particle size reduction, complexation, polymorphism and drug dispersion in carriers), chemical modifications (salt formation), and formulation modifications (Nanotechnology-based approaches and hydrotropy). : The physical and chemical modification approaches can be effectively used to enhance the solubility and dissolution rate of poorly soluble drugs, but the additional problem of poor permeability has been better addressed by lipid-based drug delivery systems. As the latter presents the drug in the solubilized state, bypass first-pass effects, circumvent the effect of Para-glycoprotein mediated efflux of drugs, hence contributing to overall bioavailability enhancement.


Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 5
Author(s):  
Raquel de Melo Barbosa ◽  
Fabio Fonseca de Oliveira ◽  
Gabriel Bezerra Motta Câmara ◽  
Tulio Flavio Accioly de Lima e Moura ◽  
Fernanda Nervo Raffin ◽  
...  

Nano-hybrid formulations combine organic and inorganic materials in self-assembled platforms for drug delivery. Laponite is a synthetic clay, biocompatible, and a guest of compounds. Poloxamines are amphiphilic four-armed compounds and have pH-sensitive and thermosensitive properties. The association of Laponite and Poloxamine can be used to improve attachment to drugs and to increase the solubility of β-Lapachone (β-Lap). β-Lap has antiviral, antiparasitic, antitumor, and anti-inflammatory properties. However, the low water solubility of β-Lap limits its clinical and medical applications. All samples were prepared by mixing Tetronic 1304 and LAP in a range of 1–20% (w/w) and 0–3% (w/w), respectively. The β-Lap solubility was analyzed by UV-vis spectrophotometry, and physical behavior was evaluated across a range of temperatures. The analysis of data consisted of response surface methodology (RMS), and two kinds of machine learning (ML): multilayer perceptron (MLP) and support vector machine (SVM). The ML techniques, generated from a training process based on experimental data, obtained the best correlation coefficient adjustment for drug solubility and adequate physical classifications of the systems. The SVM method presented the best fit results of β-Lap solubilization. In silico tools promoted fine-tuning, and near-experimental data show β-Lap solubility and classification of physical behavior to be an excellent strategy for use in developing new nano-hybrid platforms.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vikrant Abbot ◽  
Poonam Sharma

AbstractFlavonoids amongst the class of secondary metabolites possess numerous health benefits, are known for its use in pharmaceutical industry. Quercetin, a flavonoid has more prominent medical advantages however its utilization is constrained because of various instability and insolubility issues and therefore, taken into consideration for studying its physico-chemical properties. In view of that, the thermodynamic and thermoacoustic properties of quercetin were examined in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) at different hydroethanolic concentrations and temperatures. The conductivity studies were used to calculate change in enthalpy (∆Hom), change in entropy (∆Som) and change in Gibbs free Energy (∆Gom) of micellization. The interactions between quercetin and CTAB were found to be endothermic, entropically controlled and spontaneous. Further, ultrasonic sound velocity and density studies were carried out and utilized for the calculation of thermoacoustic parameters i.e. apparent molar volume and apparent molar compressibility. Thermoacoustic properties revealed that at higher surfactant concentration, hydrophobic interactions are dominant. The results suggested that the flavonoid-surfactant interactions in hydroethanolic solutions is more favourable as compared with aqueous solution. Overall, the data is favourable for the framework to be used for detailing advancement, drug development, drug industry, pharmaceutical industry, medical administration and formulation development studies.


Sign in / Sign up

Export Citation Format

Share Document