scholarly journals Mathematical Modeling of the Origami Navel Shell

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Gurmeher Kaur ◽  
Crystal Soong

The well-known Nautilus shell has been modeled extensively both by mathematicians and origamists. However, there is wide disagreement on the best-fitting mathematical model — partly because there is significant variability across different Nautilus Shells found in nature, and no single model can describe all of them well. Origami structures, however, have precise repeatable folding instructions, and do not exhibit such variability. Ironically, no known mathematical models exist for these structures. In this research, we mathematically model a prominent origami design, the Navel Shell by Tomoko Fuse, believed to be based on the Nautilus. We use first-principles geometric and trigonometric constructs for developing a non-smooth Geometric Model of the ideal origami spiral. We then search for the best-fitting parametric smooth spiral approximation, by formulating the fitting problem as a minimization problem over four unknowns. We write a Python computer program for searching the space numerically. Our evaluations show that: (i) the Smooth spiral is an excellent fit for the Geometric Model; (ii) our models for Origami Navel Shell are different from prior mathematical models for the Nautilus shell, but they come close to a recent model for a rare species of Nautilus; (iii) the Geometric Model explains the outer edges of origami images quite well and helps identify construction errors in the inner edges; and (iv) the Smooth Model helps understand how well the ideal Navel Shell matches different variants of the Nautilus species. We hope our research lays the foundation for further mathematical modeling of origami structures. 

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1569
Author(s):  
Jesús Montejo-Gámez ◽  
Elvira Fernández-Ahumada ◽  
Natividad Adamuz-Povedano

This paper shows a tool for the analysis of written productions that allows for the characterization of the mathematical models that students develop when solving modeling tasks. For this purpose, different conceptualizations of mathematical models in education are discussed, paying special attention to the evidence that characterizes a school model. The discussion leads to the consideration of three components, which constitute the main categories of the proposed tool: the real system to be modeled, its mathematization and the representations used to express both. These categories and the corresponding analysis procedure are explained and illustrated through two working examples, which expose the value of the tool in establishing the foci of analysis when investigating school models, and thus, suggest modeling skills. The connection of this tool with other approaches to educational research on mathematical modeling is also discussed.


2013 ◽  
Vol 18 (9) ◽  
pp. 571

This call for manuscripts is requesting articles that address how to use mathematical models to analyze, predict, and resolve issues arising in the real world.


1990 ◽  
Vol 193 ◽  
Author(s):  
Efthimios Kaxiras

ABSTRACTThe possibility of passivating the Si(100) surface by adsorption of Group-VI atoms (S and Se) is investigated through first-principles calculations. The structure of the ideal (1×1) configuration with the Si surface dangling bonds saturated by full monolayer coverage is examined in detail. The Group-VI adsorbates form covalent bonds to the substrate with bond-lengths very close to the sums of the covalent radii. The bond-angles are larger than in bulk configurations of the Group-VI elements. The ideal (1×1) configuration gives rise to a surface electronic state with large dispersion spanning the entire band-gap of Si. Deviations from this configuration by in-phase or out-of-phase tilting of the adsorbate atoms result in energy costs which can give qualitative information on the relative strength of adsorbate-adsorbate and adsorbate-substrate interactions.


Author(s):  
Terrence Fine

This chapter challenges the nearly universal reliance upon standard mathematical probability for mathematical modeling of chance and uncertain phenomena, and offers four alternatives. In standard practice, precise assignments are made inappropriately, even to the occurrences of events that may be unobservable in principle. Four familiar examples of chance or uncertain phenomena are discussed, about which this is true. The theory of measurement provides an understanding of the relationship between the accuracy of information and the precision with which the phenomenon under examination should be modeled mathematically. The model of modal or classificatory probability offers the least precision. Comparative probability, plausibility/belief functions and upper/lower probabilities are carefully considered. The selectable precision of these alternative mathematical models of chance and uncertainty makes for an improved range of levels of accuracy in modeling the empirical domain phenomena of chance, uncertainty, and indeterminacy. Knowledge of such models encourages further thought in this direction.


2019 ◽  
Vol 23 (3) ◽  
pp. 328-334
Author(s):  
E. Ya. Yanchevskaya ◽  
O. A. Mesnyankina

Mathematical modeling of diseases is an urgent problem in the modern world. More and more researchers are turning to mathematical models to predict a particular disease, as they help the most correct and accurate study of changes in certain processes occurring in society. Mathematical modeling is indispensable in certain areas of medicine, where real experiments are impossible or difficult, for example, in epidemiology. The article is devoted to the historical aspects of studying the possibilities of mathematical modeling in medicine. The review demonstrates the main stages of development, achievements and prospects of this direction.


Author(s):  
Olena Bibik ◽  
◽  
Oleksandr Popovich ◽  

The mode of operation of induction motors (IMs) affects their performance. In most cases, motors are optimally designed for steady state operation. When operating in other modes, additional attention is required to the problems of energy efficiency. Induction motors are the most common type of electromechanical energy converters, and a significant part of them operate under conditions of periodic changes in the load torque. The work is devoted to solving the problem of increasing the energy efficiency of asynchronous motors of electromechanical systems with a periodic load, including pumping and compressor equipment. The traditional solution to this problem for compressor equipment is the optimal design of an IM under static conditions, as well as the use of flywheels, the use of an IM with an increased slip value and controlled IM with a squirrel-cage rotor and with frequency converters. In this work, the modes of operation of asynchronous motors with periodic loading are investigated. For this, complex mathematical models are developed in the simulation system. Such models are effective in modeling taking into account periodic load changes: repetitive transient processes, their possible asymmetry and non-sinusoidality, increased influence of nonlinearity of electromagnetic parameters. In complex mathematical modeling, the mutual influence of the constituent parts of the electromechanical system is taken into account. Simulation allowed quantifying the deterioration in energy efficiency under intermittent loading, in comparison with static modes. Criteria for evaluating quasi-static modes have been developed and areas of critical decrease in efficiency have been determined. The paper proposes and demonstrates a methodology for solving this problem. For this purpose, tools have been created for the optimal design of asynchronous motors as part of electromechanical systems with periodic loading. These tools include: complex mathematical models of electromechanical systems with asynchronous motors with periodic load, mathematical tools for determining the parameters of quasi-steady-state modes, the methodology of optimal design based on the criterion of the maximum efficiency of processes under quasi-steady-state modes of operation. The possibilities, advantages and prospects of using the developed mathemati-cal apparatus for solving a number of problems to improve the efficiency of electric drives of compressor and pumping equipment are demonstrated. It is shown that by taking into account quasi-static processes, the use of complex mathematical models for the optimal design of asynchronous motors with a periodic load provides an in-crease in efficiency up to 8 ... 10%, relative to the indicators of motors that are de-signed without taking into account the quasi-static modes. The areas of intense quasi-steady-state modes are determined using the devel-oped criterion. In these areas, there is a critical decrease in efficiency compared to continuous load operation. A decrease in efficiency is associated with a decrease in the amount of kinetic energy of the rotating parts compared to the amount of electromagnetic energy. In connection with the development of a frequency-controlled asynchronous drive of mechanisms with a periodic load, the relevance of design taking into account the peculiarities of quasi-static has increased significantly. For example, a variable frequency drive of a refrigerator compressor or a heat pump can increase energy efficiency up to 40%, but at low speeds, due to a decrease in kinetic energy, the efficiency can decrease to 10 ... 15%, unless a special design methodology is applied. This problem can be solved by using the complex mathematical modeling tools developed in the article.


InterConf ◽  
2021 ◽  
pp. 444-460
Author(s):  
Viacheslav Gorodnov

One of the variants of the basic concepts of methodology and technology for the development of real objects’ and processes’ mathematical models and the assessment of the expected efficiency of these models, as well as the ratio and interconnection of the methodology concepts and the contradictions of modeling, which are one of the reasons for failures in the development of models, are presented. The technological foundations of the obviously useful models development with a simultaneous forecast of their effectiveness indicators values are systematized: reliability, efficiency, completeness of modeling, the usefulness of the developed model relative to the existing one and in comparison with the ideal model. An expression is given for predicting the time expense on developing a model.


2014 ◽  
Vol 1040 ◽  
pp. 478-483
Author(s):  
M. Goreshnev ◽  
E. Litvishko

The article is devoted to the mathematical modeling of vacuum conductive timber drying. Analysis of known mathematical models allowed revealing their advantages and disadvantages. The modeling block diagram based on the drying periods is proposed. Lykov’s equations have been selected to solve heat and mass transfer problems. The comparison of experimental and calculated data has been conducted.


2012 ◽  
Vol 63 (5) ◽  
pp. 316-321 ◽  
Author(s):  
Fatiha Lakdja ◽  
Fatima Zohra Gherbi ◽  
Redouane Berber ◽  
Houari Boudjella

Very few publications have been focused on the mathematical modeling of Flexible Alternating Current Transmission Systems (FACTS) -devices in optimal power flow analysis. A Thyristor Controlled Series Capacitors (TCSC) model has been proposed, and the model has been implemented in a successive QP. The mathematical models for TCSC have been established, and the Optimal Power Flow (OPF) problem with these FACTS-devices is solved by Newtons method. This article employs the Newton- based OPF-TCSC solver of MATLAB Simulator, thus it is essential to understand the development of OPF and the suitability of Newton-based algorithms for solving OPF-TCSC problem. The proposed concept was tested and validated with TCSC in twenty six-bus test system. Result shows that, when TCSC is used to relieve congestion in the system and the investment on TCSC can be recovered, with a new and original idea of integration.


2021 ◽  
Vol 22 (5) ◽  
pp. 272-280
Author(s):  
S. G. Pushkov ◽  
L. L. Lovitsky ◽  
O. Y. Gorshkova ◽  
I. V. Malakhova

Problems of mathematical modeling of onboard air data systems errors are of paramount importance in pitot-static sources errors determination, air data systems evaluation in flight tests. The problems of development, identification and assessment of the mathematical models of errors adequacy acquire main importance in the modern technology of the air parameters true values determination, air data systems evaluation using satellite navigation systems, developed and applied in the practice of flight tests at JSC "FRI n.a. M. M. Gromov". This paper gives a general description of an air data systems estimation technology using satellite navigation systems. The principles of solving problems of aircraft data systems aerodynamic errors mathematical modeling are stated. The structure of mathematical models, factors of the aerodynamic errors, relationship of the solving problems of errors modeling within the framework of technology with a flight experiment plan are shown. Mathematical models parameters identification are based on a complex solving of the problems of a true air data parameters values and aerodynamic errors determination in flight tests. New results of mathematical modeling of errors in tests at high angles of attack in 2018 year of medium-range and short-range aircraft are presented. The results illustrate the technology effectiveness in solving the problems of flight tests at high angles of attack information support, aerodynamic errors modeling, air data systems estimation. The applied modeling methods make it possible to allocate in the mathematical models of pitot-static sources aerodynamic errors even the factors of very weak aerodynamic influence, comparable with the minimum pressure sensors instrumental errors.


Sign in / Sign up

Export Citation Format

Share Document