GEOCHEMICAL FEATURES OF NATIVE GOLD AS DIRECT SIGNS OF ORE FORMATION LODE AND ALLUVIAL GOLD OCCURRENCE TYPES

2020 ◽  
pp. 22-31
Author(s):  
S. A. Milyaev ◽  
G. G. Samosorov ◽  
S. V. Yablokova ◽  
L. V. Shatilova ◽  
N. N. Pozdnyakova

The features of impurity element distribution in native gold of two ore formation gold deposit types are con- sidered. A typomorphic set of elements for gold-polysulfide-quartz and gold-quartz low-sulfide mineralization was determined. Geochemical indicators for estimating ore formation types of native gold are offered. The differences in gold composition due to metallogenic specialization of regions are established. Data on the distribution of rare-earth elements in native gold are obtained, which allows to predict igneous rocks composition during gold-polysulfide-quartz deposit formation.

2020 ◽  
Vol 39 (5) ◽  
pp. 41-55
Author(s):  
L.I. Polufuntikova ◽  
◽  
V.Y. Fridovsky ◽  
N.A. Goryachev ◽  
◽  
...  

The paper presents the results of studying the distribution of major, rare, and rare earth elements in the terrigenous rocks, wall-rock metasomatites, and ore zones of the orogenic Malo-Tarynsky gold deposit (Upper Kolyma folded area, Northeast Russia). Hydromicatization, carbonatization, sulfidization, and silicification played an important role in the formation of metasomatites and ore zones leding to different mobility of macroelements with a predominance of acidic low-temperature carbonic-calcium metasomatism. Increase in the proportion of quartz in wall-rock metasomatites and ore zones involved the loss of the most of the rock-forming elements: К, Na, Al, Fe, Mg, and Тi, and Ca and CO2 were supplied. The ores and metasomatites of the deposit are characterized by As-Au-Sb-W geochemical specialization with low Bi, Co, Ni, Cr, Cu, and Zn and high Li, Ag, Cd, and Sc concentrations. The distribution spectra of REE contents in modified rocks are similar to that of REE in Upper Triassic host rocks showing some tendency to decreasing their amount. The removal of rare earth elements during the formation of metasomatites and ores was established. The values of the Eu/Eu* (0.61–0.88) and Ce/Ce* (0.6–1.3) anomalies indicate slightly reducing conditions of the ore formation with a limited involvement of oxidized meteoric water.


2014 ◽  
Vol 88 (s2) ◽  
pp. 1118-1119 ◽  
Author(s):  
Peirong LI ◽  
Baocheng PANG ◽  
Baohua WANG ◽  
Yuanqiang LI ◽  
Yequan ZHOU ◽  
...  

2018 ◽  
Vol 73 (5) ◽  
pp. 451-456
Author(s):  
M. V. Borisov ◽  
D. A. Bychkov ◽  
N. F. Pchelintseva ◽  
E. A. Ivleva

2021 ◽  
Vol 27 (1) ◽  
pp. 15-23
Author(s):  
Т. Tsyrenov ◽  

The purpose of the study is to investigate rare-earth elements distribution features in all components of the natural-technogenic complexes of Akatuevsky, Blagodatsky and Novo-Shirokinsky polymetallic deposits of Eastern Transbaikalia. Due to increasing demand for rare-earth elements (REE) in various fields of industry, identification of features of REE distribution in natural-technogenic complexes of polymetallic deposits of Eastern Transbaikalia is relevant. The chemical elements of the REE group include 15 elements, yttrium (Y) and the lanthanoid group consisting of 14 elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Determination of the elemental composition of samples was carried out by X-ray fluorescence method in the Geological Institute of the Geological Institute of the Siberian Branch of the Russian Academy of Sciences (Ulan-Ude) and by ICP- MS method in the laboratory of SGS Vostok Limited (Chita). In the process of investigations REE concentrations in all components of natural-technogenic complexes of Akatuevsky, Blagodatsky and Novo-Shirokinsky polymetallic deposits (lead-zinc ores, technozems, soils) were determined. Their regular decrease of REE concentrations in the order: soils→technozems→lead-zinc ores was established. In the most of studied samples there is a decrease of heavy lanthanides content relative to light ones, as well as negative europium anomaly, in some samples of lead-zinc ores positive europium anomaly is observed. Europium anomaly magnitude (Eu/Eu*) is an indicator of the degree of differentiation of magmatic melts, determined by plagioclase fractionation processes. It is known that feldspars serve as the main controller of the Europium anomaly. The phenomenon of a negative europium anomaly is observed if plagioclase remains in the source after fractional crystallization or partial melting. Positive europium anomaly in sulphide ores is caused by the presence of barite, as well as by the accumulation of plagioclase in the liquid phase due to the fractionation process. REE is known to have adverse effects on the environment due to its high biological and biochemical activity. Modern methods of remediation of the potential damage to the environment have been proposed


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 455 ◽  
Author(s):  
Claire McLeod ◽  
Barry Shaulis

The abundance of the rare earth elements (REEs) in Earth’s crust has become the intense focus of study in recent years due to the increasing societal demand for REEs, their increasing utilization in modern-day technology, and the geopolitics associated with their global distribution. Within the context of chemically evolved igneous suites, 122 REE deposits have been identified as being associated with intrusive dike, granitic pegmatites, carbonatites, and alkaline igneous rocks, including A-type granites and undersaturated rocks. These REE resource minerals are not unlimited and with a 5–10% growth in global demand for REEs per annum, consideration of other potential REE sources and their geological and chemical associations is warranted. The Earth’s moon is a planetary object that underwent silicate-metal differentiation early during its history. Following ~99% solidification of a primordial lunar magma ocean, residual liquids were enriched in potassium, REE, and phosphorus (KREEP). While this reservoir has not been directly sampled, its chemical signature has been identified in several lunar lithologies and the Procellarum KREEP Terrane (PKT) on the lunar nearside has an estimated volume of KREEP-rich lithologies at depth of 2.2 × 108 km3. This reservoir therefore offers a prospective location for future lunar REE exploration. Within the context of chemically evolved lithologies, lunar granites are rare with only 22 samples currently classified as granitic. However, these extraterrestrial granites exhibit chemical affinities to terrestrial A-type granites. On Earth, these anorogenic magmatic systems are hosts to U-Th-REE-ore deposits and while to date only U-Th regions of enrichment on the lunar surface have been identified, future exploration of the lunar surface and interior may yet reveal U-Th-REE regions associated with the distribution of these chemically distinct, evolved lithologies.


Author(s):  
Kathryn M. Goodenough ◽  
Eimear A. Deady ◽  
Charles D. Beard ◽  
Sam Broom-Fendley ◽  
Holly A. L. Elliott ◽  
...  

AbstractThe rare earth elements (REE) are critical raw materials for much of modern technology, particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition. Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn- to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralisation in syn- to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralisation in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralisation in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.


Sign in / Sign up

Export Citation Format

Share Document