Gold and silver accessory minerals in ultramafites of the Kyzyr-Burlyuksky ultramafic massif (Western Sayan)

2022 ◽  
pp. 109-120
Author(s):  
Alexey Yurichev

The study focuses on gold and silver accessory minerals (native silver, cuprous gold, luanheite (Ag3Hg), unspecified mineral phase (Cu,Ag,Hg), first diagnosed in dunites and apodunite serpentinites of the Kyzyr-Burlyuksky ultramafic massif, which is part of the Kurtushibin ophiolite belt of Western Sayan. The revealed ore minerals are mainly observed in the form of single hypidiomorphic, irregular microscopic precipitates (0.5– 3.0 μm) mainly inside magnetite, much less often in grains of avaruite. Typomorphic and chemical features of ore minerals, their natural setting in rock-forming silicate matrix are characterized. Formation and concentration of these accessory minerals is associated with superimposed low-temperature transformation (hydration) processes affecting original ultramafic rocks. At the same time, the presence of luanheite and an unnamed phase (Cu,Ag,Hg), along with the previously identified potarite (PdHg), is probably evidence of low-temperature conditions of mineral formation during the manifestation of epigenetic processes of serpentinization (lowgrade metamorphism) due to solutions enriched in mercury. The source of such solutions could be gabbro intrusions that penetrated later into the main ultramafic body.

2013 ◽  
Vol 47 (1) ◽  
pp. 449
Author(s):  
B. Tsikouras ◽  
G. Etiope ◽  
E. Ifandi ◽  
S. Kordella ◽  
G. Papatheodorou ◽  
...  

Altered mafic and ultramafic rocks were studied in correspondence with hyperalkaline, CH4-bearing and very low-hydrogen spring waters in the Othrys ophiolite, whose chemical features are typical of present day serpentinisation. The H2 paucity is interpreted as the result of the incorporation of high-silica, aqueous fluids, probably derived from mafic rocks. The vein assemblage of serpentine + magnetite is related to circulation of low-silica fluids whereas serpentine + talc, tremolite after garnet and Fe-rich serpentine in the interior of serpentine veins reflect a late circulation of low-temperature (likely below 120 °C), high silica activity fluids. The highsilica conditions might have limited or interrupted the production of H2, which was subsequently consumed by CO2 hydrogenation to produce CH4. The lack of H2 could also be due to peridotite alteration by CO2-rich fluids. This would imply that the Othrys peridotites, among similar methane-bearing peridotites, may be considered as terrestrial analogues of Martian ultramafic rocks, which are thought to contribute to methane emission in the atmosphere of Mars. Understanding the mechanism of methane abiotic production will likely shed light to the details of some crucial aspects as the greenhouse-gas budget, the production of hydrocarbons and the origin of life on Earth.


Author(s):  
I.R. Rakhimov ◽  

The results of detailed mineralogical studies of the Malyutka massif altered rocks of the Khudolazovskiy differentiated complex are presented. The morphology and chemical composition of many rock-forming and accessory minerals are described. According to the study, the magmatic and post-magmatic (hydrothermal-metasomatic) stages of rock formation are distinguished. The problems associated with the genetic interpretation of a number of rock-forming and ore minerals are discussed. The conclusion about the polygenic nature of the formation of spinelids is made. The equilibrium temperature in the «Ti-magnetite–ilmenite» system (633–650 °C), as well as the crystallization temperature of chlorite, replacing phlogopite and hornblende (145–185 °C), were estimated.


Author(s):  
Yuriy V. Erokhin ◽  
Kirill S. Ivanov ◽  
Anatoliy V. Zakharov ◽  
Vera V. Khiller

The results of studying the mineralogy of metamorphic schists from the Pre-Jurassic base of the Arctic part of the West Siberian plate are presented. The accessory and ore mineralization of schists from the Zapadno-Yarotinsky license area located in the southern part of the Yamal Peninsula is studied. The schists was uncovered by the Zapadno-Yarotinskaya No. 300 well at a depth of 2762 m. Above the section, the metamorphic rocks are overlain by a young Meso-Cenozoic cover. The schists are mainly composed of quartz, plagioclase (albite), carbonates (dolomite and siderite), mica (muscovite) and chlorite (donbassite). The discovered accessory and ore minerals in the metamorphic schists of the Zapadno-Yarotinsky area can be divided into two groups. The first group includes minerals that were formed during the metamorphism of schists, or were preserved as detrital matter. These minerals include zircon, fluorapatite, and rutile as the most stable compounds. The remaining mineralization (pyrite, sphalerite, chalcopyrite, cubanite, galena, cobaltite, barite, xenotime-(Y), goyazite, synchysite-(Nd), native silver and copper) is clearly secondary and was formed as a result of superimposed metasomatic processes. Judging from the described mineralogy, the schists underwent changes as a result of superimposed propyllitization. The temperature range of this process is determined by the formation of cubanite in association with chalcopyrite at a temperature of 200-210 оС.


2021 ◽  
Author(s):  
benjamin bultel ◽  
Agata M. Krzesinska ◽  
Damien Loizeau ◽  
François Poulet ◽  
Håkon O. Astrheim ◽  
...  

<p>Serpentinization and carbonation have affected ultramafic rocks on Noachian Mars in several places called here serpentinization-carbonation systems (SCS). Among the most prominent SCS revealing mineral assemblages characteristic of serpentinization/carbonation is the Nili Fossae region [1]. Jezero crater – the target of the Mars 2020 rover –hosted a paleolake which constitutes a sink for sediments from Nili Fossae [1]. Thanks to the near infrared spectrometer onboard Mars2020 [2], the mission has the potential to offer ground truth measurement for other putative serpentinization/carbonation system documented on Mars. Several important aspects that may be addressed are: Do carbonates result from primary alteration of olivine-rich lithologies or are they derived by reprocessing of previous alteration minerals [3]? What is the composition? and nature of the protolith, which appear to be constituted of considerable amounts of olivine [4]? To reveal critical information regarding the conditions of serpentinization/carbonation, accessory minerals need detailed studies [1; 5]. In case of Jezero Crater, and serpentinization on Mars in general, the main alteration minerals are identified, but little is known about the accessory minerals.</p> <p>The Nili Fossae-Jezero system has potential analogues in terrestrial serpentinized and carbonated rocks, such as the Leka Ophiolite Complex, Norway (PTAL collection, https://www.ptal.eu). Here, distinct mineral assemblages record different stages of hydration and carbonation of ultramafic rocks [6].</p> <p>We perform petrological and mineralogical analyses on thin sections to characterize the major and trace minerals and combine with Near Infrared (NIR) spectroscopy measurements. A set of spectral parameters are defined and compare to spectral parameters previously used on CRISM and OMEGA data [1, 4, 7, 8]. We study the significance of the mineralogical assemblages including nature of accessory minerals. Effect of the presence of accessory minerals on the NIR signal is investigated and their potential incidence on the amount of H<sub>2</sub>/CH<sub>4</sub> production in mafic or ultramafic system is discussed [5].</p> <p>We started to apply the newly defined spectral parameters on several SCS on Mars. Results confirm local carbonation of earlier serpentinized rocks and suggest that different protoliths could have led to diversity of mineralogical associations in SCS on Mars. Multiple detection of brucite are also suggested for the first time on Mars. Altogether our results help to better describe key geochemical conditions of the SCS on Mars for habitability potential of the martian crust and Mars’s evolution.</p> <p><strong> </strong></p> <p>References:</p> <ul> <li>Brown, A. J., et al. <em>EPSL</em>1-2 (2010): 174-182.</li> <li>Wiens, R.C., et al.  <em>Space Sci Rev</em><strong>217, </strong>4 (2021).</li> <li>Horgan, B., et al. <em>Second International Mars Sample Return</em>. Vol. 2071. 2018.</li> <li>Ody, A., et al. <em>JGR: Planets</em>2 (2013): 234-262.</li> <li>Klein, F., et al. <em>Lithos</em>178 (2013): 55-69.</li> <li>Bjerga, A., et al. <em>Lithos</em>227 (2015): 21-36.</li> <li>Viviano-Beck et al, <em>JGR: Planets 11</em>8.9 (2013)</li> <li>Viviano-Beck et al, <em>JGR: Planets 119.6</em> (2014)</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document