scholarly journals Changes in Soil Nitrogen, Phosphorus, and Carbon Stocks in a Forest Ecosystem at Different Successional Stages in Leyte, Philippines

2018 ◽  
Vol 12 (1) ◽  
pp. 27-53
Author(s):  
Anane Sereñina ◽  
◽  
Suzette Lina ◽  

Forests play a vital role in the global carbon cycle since these are sources and sinks of carbon. This study was conducted to evaluate the changes in soil carbon stocks and some essential nutrients of different succession stages in two different soil types in Leyte Province. A space-fortime substitution approach was done in this study. Measurements of the physical, chemical, and biological properties of the soils were done following standard methods. The sites were characterized as Ultisol (Site 1 – Baybay, Leyte) and Andisol (Site 2 – Ormoc City). Results showed no significant differences among all the soil properties in the different forest succession stages in each site. However, variation in soil properties between sites was clearly observed. Site 2 had higher soil porosity and water holding capacity, but had lower bulk density than Site 1. Soils in Site 2 were more acidic, had higher total organic carbon, total N, and CEC but had pot, lower exchangeable bases and CEC than in Site 1. Both sites had low eff available P. The C:N ratios in all forest successions were significantly lower in Site 1 than in Site 2. This conforms to the results of substrate-induced respiration, where Site 1 was more active in CO evolution than Site 2. 2 Moreover, the soils in Site 2 significantly contained more SOC stocks (108- -1 -1 180 Mg C ha ) than in Site 1 (49-76 Mg C ha ). However, SOC stocks did not vary significantly in both sites. This result implies that the determination of soil physico-chemical properties is important in evaluating the changes of C:N ratios as well as of SOC stocks. In this study, Andisols had higher potential in storing organic C than Ultisols.

1995 ◽  
Vol 75 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Christian Godbout ◽  
Jean-Louis Brown

A Podzolic soil from an old-growth maple hardwood forest in eastern Canada was systematically sampled from a 16.5-m-long trench in 1975. In 1986, the upper 10 cm of the B horizon was resampled from two sampling lines located on each side and parallel to the 1975 trench, one at a distance of 1 m downhill and the other at a distance of 4 m uphill. Total N, organic C, pH, and exchangeable Ca, Mg and K were measured. The objectives were to evaluate the change in the chemical status of the B horizon from 1975 to 1986 and to characterize the spatial variability of the horizon. No significant change was found in the soil chemical properties tested during this 11-yr period. No significant autocorrelation was observed between soil samples 60 cm apart, except for the downhill sampling line, which was located 1 m from the trench. For most properties, the magnitude of the difference between two soil sampling units was not proportional to the distance separating them over the range of 0.6–4.2 m. Except for pH, a difference in soil properties of more than 30% was observed in 37–56% of sample pairs 60 cm apart. Resampling near (1 m) an old soil pit may not be valid because of possible local modifications of soil properties created by the pit, even when it is filled in. Key words: Podzol, soil variability, acidic deposition, soil changes


2021 ◽  
Vol 4 (2) ◽  
pp. 53-59
Author(s):  
Priyono Prawito ◽  
Impetus Hasada Windu Sitorus ◽  
Zainal Muktamar ◽  
Bandi Hermawan ◽  
Welly Herman

Understanding the relation of agroecosystem types, ages, and soil properties are vital in maintaining good quality soil. This study aims to explore the variation of selected soil properties with agroecosystem types and ages. The research has been conducted in North Bengkulu, Indonesia. Soil properties on agroecosystems of 5-yr, 10-yr, 15-yr oil palm plantation, 5-yr, 10-yr, 15-yr rubber plantation, food cropland, and scrubland were evaluated. The study found that soil in oil palm and rubber plantations of any age have a similar texture, bulk density (BD), and actual soil moisture (ASM). All plantation agroecosystems and scrubland have higher clay and lower silt content than that in food cropland. In addition, the scrubland has the highest ASM content among the agroecosystems. On the other hand, both agroecosystems enhances soil chemical properties than food cropland and scrubland as indicated by the improvement of organic-C, total-N, available P, exchangeable K and CEC of Ultisols. Older plantation also provides higher soil chemical improvement than younger one. This finding is significant for management of sub optimal soil mainly Ultisols for oil palm and rubber plantation.


2019 ◽  
Vol 41 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Megdad Jourgholami ◽  
Somayeh Khajavi ◽  
Eric R. Labelle

Several rehabilitation treatments have been applied to mitigate runoff and sediment in machine trafficked areas following logging operations, while the knowledge on the consequence of these remediation techniques on the recovery of soil properties remains scarce. The objective of the study was to determine the effect of different rehabilitation treatments including sawdust mulch (SM), water diversion structure (WDS), untreated/bare trail (U), and undisturbed or control area (UND) on the recovery of soil chemical properties over a six-year period after machine-induced compaction occurred on three longitudinal trail gradients (10, 20, and 30 %).In each treatment, the following soil properties were measured: litter thickness, pH, EC, soil organic C, total N, and available P, K, Ca, and Mg. Five sampling plots (with 10 m length and 4 m width) were positioned in each trail gradient classes and three of these plots were randomly considered for soil sampling.The results demonstrate that litter thickness differed among the three treatments, with the highest amount present on the UND area and lowest on the U treatment. Meanwhile, the highest pH (6.75), EC (0.21 Ds m−1), N (0.27 %), available P (14.61 mg kg−1), available K (123.5 mg kg−1), available Ca (135.1 mg kg−1), and available Mg (42.1 mg kg−1) and the lowest C (1.21 %) and C/N ratio (7.83 %) were found on the SM with gradient of 10 % compared to other gradient classes on SM, WDS and, U treatments. The recovery value of litter depth, pH, EC, C, N, C/N ratio, and available nutrients (P, K, Ca, and Mg) were higher on the SM than the WDS at the gradient of 10 %, while significantly higher levels of these variables were measured under WDS installed on trail gradients of 30 % and 20 % when compared with the same gradients on SM. Results of the study revealed that soil chemical properties showed some evidence of recovery following SM and WDS rehabilitation treatments compared to U, although these properties did not fully recover within 6 years as compared to UND area.


2010 ◽  
pp. 41-49
Author(s):  
Md Abiar Rahman ◽  
Md Giashuddin Miah ◽  
Hisashi Yahata

Productivity of maize and soil properties change under alley cropping system consisting of four woody species (Gliricidia sepium, Leucaena leucocephala, Cajanus cajan and Senna siamea) at different nitrogen levels (0, 25, 50, 75 and 100% of recommended rate) were studied in the floodplain ecosystem of Bangladesh. Comparative growth performance of four woody species after pruning showed that L. leucocephala attained the highest height, while C. cajan produced the maximum number of branches. Higher and almost similar amount of pruned materials (PM) were obtained from S. siamea, G. sepium and C. cajan species. In general, maize yield increased with the increase in N level irrespective of added PM. However, 100% N plus PM, 75% N plus PM and 100% N without PM (control) produced similar yields. The grain yield of maize obtained from G. sepium alley was 2.82, 4.13 and 5.81% higher over those of L. leucocephala, C. cajan and S. siamea, respectively. Across the alley, only one row of maize in the vicinity of the woody species was affected significantly. There was an increasing trend in soil properties in terms of organic C, total N and CEC in alley cropping treatments especially in G. sepium and L. leucocephala alleys compared to the initial and control soils. Therefore, one fourth chemical N fertilizer can be saved without significant yield loss in maize production in alley cropping system.


2021 ◽  
Vol 52 (2) ◽  
pp. 461-470
Author(s):  
Tariq & et al.

The study was conducted to examine the effect of surface burn severity (Moderate, Severe and Unburned) of wheat straw on soil properties. The results showed statistical differences in some soil physical, chemical and biological properties. Bulk density and field capacity increased statistically by the severity of fire; however, porosity and infiltration rate were statistically lower in sever burned plot when compared to unburned plot. The chemical properties, soil organic matter (SOM), P, Ca, S, Cl, K, Mo, Fe and As were not affected by the fire. The pH value was increased slightly by increasing the fire severity, while, EC was decreased when compared with the unburned plot. It was found a statistical reduction in the number of bacterial and fungal cells per gram soil in the burned plots. A moderate and severe fire reduced seed germination percentage significantly. This finding suggests that fire severity may destruct the biological, physical and some of the chemical properties of the soil, and this may impact negatively on plant growth in the next growing season.


2013 ◽  
Vol 59 (No. 8) ◽  
pp. 372-377 ◽  
Author(s):  
W. Szulc ◽  
B. Rutkowska

The determination of a range of boron concentration in the soil solution, evaluation of the effect of physico-chemical soil properties on boron concentration in the soil solution as well verification whether boron quantity in the soil solution is sufficient for nutritional needs of selected plants cultivated in Poland were comprised. Average boron concentration in the soil solution of Poland&rsquo;s cultivated soils ranges from 0.59 to 5.07 &micro;mol/L and is differentiated by physico-chemical properties of soil. Taking into account decreasing effects of soil properties on the increase of boron concentration in the soil solution, the soil properties can be arranged as follows: organic C &gt;<br />soil abundance in available boron &gt; soil texture &gt; soil pH. The minimum boron quantity observed in the soil solution of Poland&rsquo;s cultivated soils was not sufficient to fulfil nutritional needs of the plants. The maximum boron quantity observed secured nutritional needs of cereals and potatoes but not those of rape plants and sugar beets. Based on the study it can be concluded that the measurement of the concentration of boron in the soil solution can be used in the diagnosis of deficiency of this element for crops.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 773
Author(s):  
Sara Huerta ◽  
Víctor Fernández-García ◽  
Leonor Calvo ◽  
Elena Marcos

Recent changes in fire regimes, with more frequent, extensive, and severe fires, are modifying soil characteristics. The aim of this study was to evaluate the effect of burn severity on the resistance of some physical, chemical, and biochemical soil properties in three different forest ecosystems affected by a wildfire in the northwest of the Iberian Peninsula. We evaluated burn severity immediately after fire using the Composite Burn Index (CBI) in three different ecosystems: shrublands, heathlands, and oak forests. In the same field plots used to quantify CBI, we took a composite soil sample to analyse physical (mean weight diameter (MWD)), chemical (pH; total C; total organic C (TOC); total inorganic C (TIC); total N; available P; exchangeable cations Na+, K+, Mg2+, and Ca2+; and cation exchange capacity (CEC)), and biochemical (β-glucosidase, urease, and acid phosphatase enzyme activities) properties. The resistance index of each property was then calculated. Based on our results, the values of the soil chemical properties tended to increase immediately after fire. Among them, total C, TOC, and exchangeable Na+ showed higher resistance to change, with less variation concerning pre-fire status. The resistance of chemical properties was higher in the oak forest ecosystem. MWD decreased at high severity in all ecosystems, but soils in shrublands were more resistant. We found a high decrease in soil enzymatic activity with burn severity, with biochemical properties being the least resistant to change. Therefore, the enzymatic activity of soil could be a potential indicator of severity in forest ecosystems recently affected by wildfires.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Muhammad Fajri ◽  
Pratiwi PRATIWI ◽  
Yosep Ruslim

Abstract. Fajri M, Pratiwi, Ruslim Y. 2020. The characteristics of Shorea macrophylla’s habitat in Tane’ Olen, Malinau District, North Kalimantan Province, Indonesia. Biodiversitas 21: 3454-3462.  Shorea macrophylla is a tree species in Tane' Olen forest area. This study analyzed the soil’s physical and chemical properties, topography, and microclimate of S. macrophylla’s habitat. A purposive method was used to select a sampling plot and to place the subplots. Soil was analyzed to determine the physical properties, i.e., texture, bulk density, porosity, and water content, and the chemical properties, i.e., pH, CEC, total N, organic C, C/N ratio, P, K , and Al saturation. Importance value index was determined for each tree species to know the species composition in the study site. Only the dominant species were presented. The soil at the study site had bulk density of 0.60-1.31 gram cm³-1, porosity 50.60%-77.35%, water content 34.88%-95.37%, and soil texture sandy clay. The chemical properties of the soil were as follows: pH was 3.6-4.8, N 0.05%-0.19%, organic C 1.40%-3.65%, P 0.41-1.22 mg 100 gr-1, K 58.68-232.55 mg 100 gr-1, and Cation Exchange Capacity (CEC) 5.35-10.81 meg 100gr -1. Slope ranged between 0 and 25%. The microclimate characteristics were as follows: temperature was 24-26.5°C, relative humidity 76-87%, and light intensity 145-750 Lm. Trees species with an IVI ≥ 10% were S. macrophylla, Madhuca spectabilis, Myristica villosa Warb, Scorodocarpus borneensis, Eugenia spp., Palaquium spp., Macaranga triloba, Syzygium inophyllum and Shorea sp. Positive associations were observed between S. macropylla and S. borneensis, Eugenia spp., Palaquium spp.. and M. triloba, and negative associations were observed between S. macropylla and M. spectabilis, M. villosa Warb, S. inophyllum, and Shorea sp. S. macrophylla grows on riversides with flat and gentle topography, acidic soil, and lower fertility but with suitable microclimate. This species can be recommended to be planted in degraded tropical forest areas but the microclimate and soil properties should be taken into account.


2014 ◽  
Vol 51 (3) ◽  
pp. 435-450 ◽  
Author(s):  
TH. MATSI ◽  
A. S. LITHOURGIDIS ◽  
N. BARBAYIANNIS

SUMMARYThe impact of liquid cattle (Bos taurusL.) manure, applied to soil at common rates and for several years, on certain plant parameters and soil properties has not been studied extensively. The objectives of this study were: a) to assess the effects of manure application on corn (Zea maysL.) yield, macro- and micronutrient concentrations and uptake, in a three-year (2006–2008) field experiment conducted in northern Greece and b) to evaluate the 11-year effect of manure application on soil fertility (particularly on micronutrients avialability) and chemical properties (especially on organic C and total N content). The field experiment of this study had been used in a similar fertilisation experiment since 1996. The treatments, which were applied on the same plots each year over the 11-year period, were: (i) soil incorporation of liquid dairy cattle manure before sowing, at a rate equal to the common N-P inorganic fertilisation for each crop (based on manure's total N and P content); (ii) application of the common inorganic N-P fertilisation for each crop before sowing; (iii) identical to ii, but with split application of the N fertilisers; (iv) no fertilisation (control). Corn dry aboveground biomass yield at the R3 growth stage and grain yield, N, P, K concentrations and macro- and micronutrients uptake increased (p≤ 0.05) upon manure addition at levels similar to or higher than the inorganic fertilisation treatments. The relative increase in grain yield during the three-year period ranged between 63–75% for manure treatment and 50–75% for both inorganic fertilisation treatments. After 11 years of manure application, organic C, total N, and available NO3-N, P, K, Cu, Zn, Mn, and B increased (p≤ 0.05) in the surface soil (0–30 cm). However, no trend of nutrient build up was evident through years (except for Zn). Surprisingly, salinity and available NO3-N in the 60–90 cm soil depth of the manure-treated plots were lower (p≤ 0.05) than that of the inorganic fertilisation treatments and similar to control. Electrical conductivity was 1.76, 3.05, 2.96 and 1.36 dS m−1, for manure treatment, the two inorganic fertilisation treatments and control, respectively, whereas the respective NO3-N concentrations were 7.7, 44.6, 55.1 and 8.3 mg kg−1. Conclusively, repeated application of liquid cattle manure into the soil, at rates comparable to the common inorganic fertilisation for 11 years, can enhance crop yield and macronutrient concentrations in plant tissues and uptake, at levels similar to the inorganic fertilisation. In addition, it can increase micronutrients plant uptake and maintain soil fertility with respect to both macro- and micronutrients and increase soil organic C and total N, without either causing nutrient build up or increasing soil salinity and NO3−accumulation in the deeper soil layers.


Author(s):  
Resman ◽  
Sahta Ginting ◽  
Muhammad Tufaila ◽  
Fransiscus Suramas Rembon ◽  
Halim

The research aimed to determine the effectiveness of compost containing humic and fulvic acids, and pure humic and fulvic acids in increasing of Ultisol soil chemical properties. The research design used a randomized block design (RBD), consisting of 10 treatments, namely K0: 0 g polybag-1, KO1: 500 g polybag-1, KO2: 500 g polybag-1, KO3: 500 g polybag-1, KO4: 500 g polybag-1, KO5: 500 g polybag-1, KO6: 500 g polybag-1, KO7: 500 g of polybags-1, H: 50 g of polybag-1, A: 500 g polybag-1. Each treatment was repeated three times and obtained 30 treatment units. The results showed that pH H2O (K0: 4.49, KO1: 5.64, KO2: 5.47, KO3: 5.43, KO4: 5.51, KO5: 5.39, KO6: 5.48, KO7: 6.17, H: 5.06, F: 5.15), total-N (%) (K0: 0.13, KO1: 0.17, KO2: 0.18, KO3: 0.30, KO4: 0.25, KO5: 0.24, KO6: 0.29, KO7: 0.36, H: 0.16, F: 0.14), organic-C (%) (K0: 1.85, KO1; 2.30, KO2: 2.24, KO3: 2.33, KO4: 2.62, KO5: 2.25, KO6: 2.27, KO7: 2.95, H: 2.32, F: 2.26) , available-P (%) (K0: 2.75, KO1: 3.24, KO2: 3.16, KO3: 3.27, KO4: 3.57, KO5: 3.31, KO6: 3.37, KO7: 3.89, H: 3.10, F: 3.12), exchangeable-Al (me100g-1) (K0: 2.51, KO1: 2.11, KO2: 2.13, KO3: 2.15, KO4: 1.88, KO5: 2.14, KO6: 2.12, KO7: 1.75, H: 2.16, F: 2.17), base saturation (%) (K0: 30.91, KO1: 63.48, KO2: 52.63, KO3: 53.76, KO4: 56.13, KO5: 54.96, KO6: 56.71, KO7: 65.53, H: 39.11, F: 42.76), cation exchange capacity (me100g-1) (K0: 12.76, KO1: 15.64, KO2: 14.86, KO3: 14.35, KO4: 14.13, KO5: 15.01, KO6: 15.50, KO7: 17.94, H: 14.19, F: 13.73). The combined compost treatment of three types of organic matter (Imperata cylindrica + Rice straw + Glincidia sepium) is more effective in increasing the pH, H2O as 37.42%, total-N as 176.92%, Organic-C as 59.46%, available-P as 41.45%, base saturation as 65.53%, cation exchange capacity as 17.94% and exchangeable -Al, Alreduction as 30.28% of ultisol soil. KEY WORDS: compost, humic acid, fulvate, soil chemical, ultisol


Sign in / Sign up

Export Citation Format

Share Document