scholarly journals TURBULENCE MODELS APPLIED TO CLASSICAL FLUID MECHANICS AND HEAT TRANSFER PROBLEMS - THE PERFORMANCE EVALUATION OF THE OPEN SOURCE CFD PACKAGE OPENFOAM

2021 ◽  
Vol 1 (5) ◽  
pp. e1539
Author(s):  
Paulo Rocha ◽  
Felipe Pinto Marinho ◽  
Victor Oliveira Santos ◽  
Stéphano Praxedes Mendonça ◽  
Maria Eugênia Vieira da Silva

Topics related to the modeling of turbulent flow feature significant relevance in several areas, especially in engineering, since the vast majority of flows present in the design of devices and systems are characterized to be turbulent. A vastly applied tool for the analysis of such flows is the use of numerical simulations based on turbulence models. Thus, this work aims to evaluate the performance of several turbulence models when applied to classic problems of fluid mechanics and heat transfer, already extensively validated by empirical procedures. The OpenFOAM open source software was used, being highly suitable for obtaining numerical solutions to problems of fluid mechanics involving complex geometries. The problems for the evaluation of turbulence models selected were: two-dimensional cavity, Pitz-Daily, air flow over an airfoil, air flow over the Ahmed blunt body and the problem of natural convection between parallel plates. The solution to such problems was achieved by utilizing several Reynolds Averaged  Equations (RANS) turbulence models, namely: k-ε, k-ω, Lam-Bremhorst k-ε, k-ω SST, Lien-Leschziner k-ε, Spalart-Allmaras, Launder-Sharma k-ε, renormalization group (RNG) k-ε. The results obtained were compared to those found in the literature which were empirically obtained, thus allowing the assessment of the strengths and weaknesses of the turbulence modeling applied in each problem.

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 901
Author(s):  
Davide Bertini ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


Author(s):  
Luca Mangani ◽  
David Roos Launchbury ◽  
Ernesto Casartelli ◽  
Giulio Romanelli

The computation of heat transfer phenomena in gas turbines plays a key role in the continuous quest to increase performance and life of both component and machine. In order to assess different cooling approaches computational fluid dynamics (CFD) is a fundamental tool. Until now the task has often been carried out with RANS simulations, mainly due to the relatively short computational time. The clear drawback of this approach is in terms of accuracy, especially in those situations where averaged turbulence-structures are not able to capture the flow physics, thus under or overestimating the local heat transfer. The present work shows the development of a new explicit high-order incompressible solver for time-dependent flows based on the open source C++ Toolbox OpenFOAM framework. As such, the solver is enabled to compute the spatially filtered Navier-Stokes equations applied in large eddy simulations for incompressible flows. An overview of the development methods is provided, presenting numerical and algorithmic details. The solver is verified using the method of manufactured solutions, and a series of numerical experiments is performed to show third-order accuracy in time and low temporal error levels. Typical cooling devices in turbomachinery applications are then investigated, such as the flow over a turbulator geometry involving heated walls and a film cooling application. The performance of various sub-grid-scale models are tested, such as static Smagorinsky, dynamic Lagrangian, dynamic one-equation turbulence models, dynamic Smagorinsky, WALE and sigma-model. Good results were obtained in all cases with variations among the individual models.


1971 ◽  
Vol 93 (4) ◽  
pp. 432-440 ◽  
Author(s):  
T. B. Swearingen ◽  
D. M. McEligot

The results of a numerical investigation of internal laminar heat transfer to a gas with temperature-dependent properties are reported. In this investigation the authors obtained numerical solutions to the coupled partial differential equations of continuity, energy, momentum, and integral continuity describing the two-dimensional flow of perfect gas between heated parallel plates. A sequence of numerical solutions was obtained for the case of constant wall heat flux with a fully developed velocity profile at the start of the heated section and pure forced convection. The results may be summarized by Nu=Nuconst.prop.+0.024(Q+)0.3(Gzm)0.75f·Rem=24(Twall/Tbulk) where the subscript “m” refers to properties evaluated at the local mixed-mean (or bulk) temperature.


2020 ◽  
Vol 50 (4) ◽  
pp. 283-289
Author(s):  
S. Jena ◽  
S. R. Mishra ◽  
P.K. Pattnaik ◽  
Ram Prakash Sharma

This paper deals with nanofluid flow between parallel plates and heat transfer through porous media with heat source /sink. The governing equations are transformed into self-similar ordinary differential equations by adopting similarity transformations and then the converted equations are solved numerically by Runge-Kutta fourth order method. Special emphasis has been given to the parameters of physical interest which include Prandtl number, magnetic parameter, porous matrix, chemical reaction parameter and heat source parameter. The results obtained for velocity, temperature and concentration are shown in graphs. The comparison of the special case of this present results with the existing numerical solutions in the literature shows excellent agreement.


2017 ◽  
Vol 21 (2) ◽  
pp. 570-599 ◽  
Author(s):  
Heng Xiao ◽  
Jian-Xun Wang ◽  
Patrick Jenny

AbstractA consistent dual-mesh hybrid LES/RANS framework for turbulence modeling has been proposed recently (H. Xiao, P. Jenny, A consistent dual-mesh framework for hybrid LES/RANS modeling, J. Comput. Phys. 231 (4) (2012)). To better enforce componentwise Reynolds stress consistency between the LES and the RANS simulations, in the present work the original hybrid framework is modified to better exploit the advantage of more advanced RANS turbulence models. In the new formulation, the turbulent stresses in the filtered equations in the under-resolved regions are directly corrected based on the Reynolds stresses provided by the RANS simulation. More precisely, the new strategy leads to implicit LES/RANS consistency, where the velocity consistency is achieved indirectly via imposing consistency on the Reynolds stresses. This is in contrast to the explicit consistency enforcement in the original formulation, where forcing terms are added to the filtered momentum equations to achieve directly the desired average velocity and velocity fluctuations. The new formulation keeps the averaging procedure for the filtered quantities and at the same time preserves the ability of the original formulation to conform with the physical differences between LES and RANS quantities. The modified formulation is presented, analyzed, and then evaluated for plane channel flow and flow over periodic hills. Improved predictions are obtained compared with the results obtained using the original formulation.


2004 ◽  
Vol 15 (02) ◽  
pp. 307-319 ◽  
Author(s):  
AHMAD AL-ZOUBI ◽  
GUNTHER BRENNER

In the present paper, a comparative study of numerical solutions for steady flows with heat transfer based on the finite volume method (FVM) and the relatively new lattice Boltzmann method (LBM) is presented. In the last years, the LB methods have challenged the classical FV methods to solve the Navier–Stokes equations and have proven to be superior in accuracy and efficiency for certain applications. Most of these studies were related to the transport of mass and momentum. In the meantime, significant effort has been invested in the application of the LBM to simulate flows including heat transfer. The studies in the present paper are the analysis of performance and accuracy aspects of LBM applied to the prediction of these flows. For a fully developed laminar flow between parallel plates, analytical solutions for the heat transfer in fully developed thermal boundary layers are available and may be compared with the respective numerical results. Finally, a hybrid approach is proposed to circumvent numerical problems of the thermal LB methods.


2013 ◽  
Vol 364 ◽  
pp. 524-528 ◽  
Author(s):  
Si Huang ◽  
Tian Tian Ding ◽  
Chao Yan ◽  
Zi Sheng Wang

Transient air flow and heat transfer in a container-drying room is simulated by using Airpak software in this paper. The transient numerical solutions are obtained for air flow within the drying room including flow speed, pressure, temperature, mean age of air, etc. The analysis focuses on temperature, temperature rise and mean age of air surrounding the container surface with heating time. Drying design is determined by comparing two different ways for heating and ventilation. By means of simulation, it is possible to significantly shorten the drying time of the container corners, and to achieve the purpose of energy saving.


Author(s):  
Takashi Yamane ◽  
Yuhi Tanaka

The conjugate heat transfer simulation is expected to simulate precise temperature distributions of turbine cooling structures and contribute to the reduction of cooling air usage. This method has mainly been used to predict steady state temperature because of the large difference of time scale between RANS flow simulation and thermal conduction in solid materials, thus the accuracy of temperature estimation depends on the modeling of the turbulence. Despite many efforts to improve turbulence models, an inherent limitation of RANS and turbulence modeling and the necessity of unsteady simulation for better accuracy in heat transfer simulations have been pointed out. The aim of this study is to combine the unsteady RANS simulation with the steady thermal conduction of solid materials. The “Time Smoothing” method was introduced to compensate the large time scale difference between fluid and solid, then the effectiveness of the method was confirmed through conjugate heat transfer simulations around a pipe shape object where strong flow unsteadiness prevails.


Sign in / Sign up

Export Citation Format

Share Document