scholarly journals Effect of Sb-doping on Optical Properties of Fe2O3 Thin Films

2020 ◽  
Vol 20 (3) ◽  
pp. 1-10
Author(s):  
Wasmaa A. Jabbar

Fe2O3 and Sb doped Fe2O3 thin films with deferent percentage wereintended via spray pyrolysis technique. Effect of Sb doped on opticalparameters was studied utilizing Double beam spectrophotometer in orderto locate transmittance spectra. Absorbance was raised with accretion of Sbconcentration, same behavior was noticed for extinction coefficient. Energygap was decreased from 3.25 eV for undoped film to 3.0 eV on 3% Sbdoping., while Reflectance, absorption coefficient and refractive indexwere shown the opposite behavior by decrease their values with increasingof Sb.

Author(s):  
Nidhal Nissan Jandow

This work presents the effect of Cu-doping on some optical properties of Cu:NiO thin film prepared by spray pyrolysis technique. UV-Visible spectrophotometer in the range 380-900 nm used to determine the absorbance spectra for various Cu-doping of Cu:NiO thin film. The transmittance and energy gap are decreased with increasing Cu-doping in the prepared films, while absorption coefficient, extinction coefficient, and skin depth are increased with increasing Cu-doping.


2011 ◽  
Vol 8 (2) ◽  
pp. 561-565
Author(s):  
Baghdad Science Journal

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.


2020 ◽  
Author(s):  
Shereen Alshomar

Abstract In this study, nanocrystalline TiO 2 : Eu 3+ thin films are successfully formed by spray pyrolysis technique deposited on glass substrate. Optical, electrical, structure, surface morphology, and photocatalytic degradation of Methylene blue have been examined. The optical properties of the films are analyzed using transmittance and reflectance spectra, which are measured using UV-Vis-NIR double-beam spectrophotometer. Optical properties such as refractive index (n), extinction coefficient (k), optical conductivity (σ) and Urbach energy (E u ) have been calculated as a function of Eu 3+ concentration. Film thickness were evaluated using the refractive index dependence on wavelength . The films thickness were determined as 97.13, 122.62, 123.24, 117.14 and 128.25 nm, respectively, for Eu doped TiO 2 at 0,4, 6, 8 and 10 wt % doping concentration. The band gap values raised from 3.29 to 3.42 eV with increasing the Eu 3+ dopant concentration. The highest electrical conductivity was found to be 3.01x10 -2 (Ω.cm) -1 at high doping level with 10 wt% Eu 3+ . The XRD analysis illustrate the tetragonal crystal structure of films with anatase phase and reduces crystallite size linearly with increasing Eu 3+ concentration. Scanning electron microscopy (SEM) analysis indicated consistent allocation of irregular and spherical shaped grains covering the substrate surface. The average grain size in range of 82.5 – 51.1 nm is observed and films show porous nature. The photocatalytic effect of TiO 2 : Eu 3+ thin films is predicted from the degradation of methylene blue (MB) at room temperature under UV light irradiation. An enhancement in photocatalytic degradation observed by increasing the amount of Eu 3+ due to increase in the e/h pair production and increase of film thickness. These results make TiO 2 : Eu 3+ thin films as attractive candidate for photovoltaic cells and other optoelectronic device applications


2010 ◽  
Vol 7 (1) ◽  
pp. 168-173
Author(s):  
Baghdad Science Journal

Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness increased.


2018 ◽  
Vol 15 (2) ◽  
pp. 221-226
Author(s):  
Baghdad Science Journal

In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma


Author(s):  
Wasmaa Abdulsattar Jabbar

Copper oxide prepared with various contains of Manganese by chemical spray pyrolysis. Some optical properties are studied from recording the absorption spectra via UV-Visible spectrophotometer in the range of 460-900 nm. The absorbance increased with increasing Mn-contain in the CuO thin films, and the absorption coefficient. Extinction coefficient and refractive index are decreased with increasing Mn-contain in the CuO thin films, also the energy gap shifted from 2 eV to 1.91 eV after 4%Mn additive.


2021 ◽  
pp. 1513-1523
Author(s):  
Shaymaa Khashea Abdo ◽  
Jamal M. Rzaij

 The quaternary alloy of Cu2CdSnS4 (CCSS) is one type of thin film materials that contributes to the field of photovoltaic devices manufacturing, the importance of which has not been commonly enlightened as most of the other materials. For the preparation of CCSS thin films at 350 °C on glass substrates, the chemical spray pyrolysis technique was used. The optical properties of thin films prepared under the influence of the variation of copper solution molarity (0.03, 0.05, 0.07, and 0.09 M) on the quaternary compound were examined using a UV-vis spectrophotometer. The findings of the AFM study showed the atoms on the surface that are acclimatized in the form of nanorods with an increase in the average grain size from 62.72 to 79.17 nm. The results also showed an improvement in the average surface roughness from 5.69 to 12.8 nm when copper concentration increased from 0.03 to 0.09 M. The UV-vis results showed that the optical transmittance of CCSS decreases by increasing the solution molarity of copper, with a change in the absorption edge toward the low energy side (redshift). With an increase in the wavelength between 725 and 960 nm, a low absorption coefficient was found in the infrared region, while a strong absorption coefficient in the visible range was observed with the increase in copper solution molarity. The energy gap values decreased from 1.6 to 1.47 eV when copper solution molarity increased from 0.03 to 0.09 M. By raising copper solution molarity to 0.09 M, the refractive index at the absorption edge was increased from 1.6 to 1.97, while the extinction coefficient reduced.


Sign in / Sign up

Export Citation Format

Share Document