Historical Changes in Large River Fish Assemblages of the Americas

<em>Abstract.</em>—The upper Colorado River basin supports a native ichthyofauna of 14 species or subspecies that have been impacted by poor land-use practices, altered flows, physical habitat fragmentation, competition and predation from nonnative fish species, and degraded water quality. Five taxa are federally endangered, including the large-river species, Colorado pikeminnow <em>Ptychocheilus lucius</em>, humpback chub <em>Gila cypha</em>, bonytail <em>G. elegans</em>, razorback sucker <em>Xyrauchen texanus</em>, and a warm-stream subspecies, Kendall Warm Springs dace <em>Rhinichthys osculus thermalis</em>. Two recovery programs, formed through cooperative agreements among federal, state, tribal, and private agencies and stakeholders, coordinate activities in the upper basin that have helped to resolve water resource issues, implement management actions to minimize or remove threats, and conserve endangered species. A cooperative biological management program among state and federal agencies works to protect the Kendall Warm Springs dace. Conservation agreements have also been established for the other native fish species. Continued public and institutional support for these programs is vital to species recovery and to the balance between long-term species conservation and human demands on the Colorado River system.

2017 ◽  
Vol 8 (1) ◽  
pp. 333-342 ◽  
Author(s):  
Forest P. Hayes ◽  
Michael J. Dodrill ◽  
Brandon S. Gerig ◽  
Colton Finch ◽  
William E. Pine III

Abstract Determining the population status of endangered Humpback Chub Gila cypha is a major component of the adaptive management program designed to inform operation of Glen Canyon Dam upstream from Grand Canyon, Arizona. In recent decades, resource managers have identified a portfolio of management actions (with intermittent implementation) to promote population recovery of Humpback Chub, including nonnative fish removal, changes in water release volumes and discharge ramping schedules, and reductions in hydropower peaking operations. The Humpback Chub population in Grand Canyon has increased over this same period, causal factors for which are unclear. We took advantage of unusual hydrology in the Colorado River basin in 2011 to assess trends in juvenile Humpback Chub length–weight relationships and condition in the Colorado River below Glen Canyon Dam as well as in the unregulated Little Colorado River. Within each river, we observed higher length–weight b-parameter estimates (exponent of the standard power equation) at higher water temperatures. We also found higher slope estimates for the length–weight relationship at higher temperatures in the Little Colorado River. Slope estimates were more variable in the Colorado River, where mean water temperatures were more uniform. The next step is to examine whether Humpback Chub length–weight relationships influence population metrics such as abundance or survival. If these relationships exist, then monitoring condition in juvenile Humpback Chub would provide a quick and low-cost technique for assessing population response to planned management experiments or changing environmental conditions.


<em>Abstract.</em>—In this paper, we review information regarding the status of the native fishes of the combined Sacramento River and San Joaquin River drainages (hereinafter the “Sacramento–San Joaquin drainage”) and the factors associated with their declines. The Sacramento–San Joaquin drainage is the center of fish evolution in California, giving rise to 17 endemic species of a total native fish fauna of 28 species. Rapid changes in land use and water use beginning with the Gold Rush in the 1850s and continuing to the present have resulted in the extinction, extirpation, and reduction in range and abundance of the native fishes. Multiple factors are associated with the declines of native fishes, including habitat alteration and loss, water storage and diversion, flow alteration, water quality, and invasions of alien species. Although native fishes can be quite tolerant of stressful physical conditions, in some rivers of the drainage the physical habitat has been altered to the extent that it is now more suited for alien species. This interaction of environmental changes and invasions of alien species makes it difficult to predict the benefits of restoration efforts to native fishes. Possible effects of climate change on California’s aquatic habitats add additional complexity to restoration of native fishes. Unless protection and restoration of native fishes is explicitly considered in future water management decisions, declines are likely to continue.


Author(s):  

<em>Abstract.</em>—The Willamette River is Oregon’s largest river, with a basin area of 29,800 km<sup>2</sup> and a mean annual discharge of 680 m<sup>3</sup>/s. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved oxygen concentrations and floating and benthic sludge deposits that hindered salmon migration and boating. Following basin-wide secondary waste treatment and low-flow augmentation, water quality markedly improved, salmon runs returned, and recreational uses increased. However, water pollution remains a problem as do physical habitat alterations, flow modification, and alien species. Fish assemblages in the main-stem Willamette River were sampled systematically, but with different gear, in the summers of 1945, 1983, and 1999. In the past 53 years, tolerant species occurrences decreased and intolerant species occurrences increased. In the past 20 years, alien fishes have expanded their ranges in the river, and four native fish species have been listed as threatened or endangered. We associate these changes with improved water quality between 1945 and 1983, fish migrations, altered flow regimes and physical habitat structure, and more extensive sampling.


<em>Abstract.</em>—The Rio das Velhas is a tributary of the Rio São Francisco, one of Brazil’s largest rivers. It is the Rio São Francisco’s second most important tributary in water volume (mean annual discharge of 631 m<sup>3</sup>/s), with a drainage area of 27,867 km<sup>2</sup>, length of 761 km, and mean width of 38 m. Like many other rivers around the world, it became heavily polluted in the 1900s. The Rio das Velhas is the most polluted river of Minas Gerais state because the basin contains approximately 4.5 million people. Unlike other Brazilian rivers, its fish fauna was studied from 1850 to 1856. Fifty-five fish species were recorded; 20 of them were first described at that time, when there were previously no more than 40 known species in the entire São Francisco basin. Recent fish collections, approximately 150 years later, indicate 107 fish species, but some may be locally extinct. There are good prospects of rehabilitating this fauna because of the connectivity of the Rio das Velhas with the São Francisco main stem, its well-preserved tributaries, and increased investments in sewage treatment.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 2
Author(s):  
John Fleck ◽  
Anne Castle

The Colorado River is a critical source of water supply for 40 million people in nine states spanning two nations in western North America. Overallocated in the 20th century, its problems have been compounded by climate change in the 21st century. We review the basin’s hydrologic and water management history in order to identify opportunities for adaptive governance to respond to the challenge of reduced system flows and distill the ingredients of past successes. While significant advances have been made in the first two decades of the 21st century, these past actions have not been sufficient to halt the declines in the basin’s reservoirs. We find that the mix of federal, state, and local responsibility creates challenges for adaptation but that progress can be made through a combination of detailed policy option development followed by quick action at hydrologically driven moments of opportunity. The role of directives and deadlines from federal authorities in facilitating difficult compromises is noted. The current state of dramatically decreased overall flows has opened a window of opportunity for the adoption of water management actions that move the river system toward sustainability. Specific measures, based on the existing institutional framework and on policy proposals that have circulated within the Colorado River community, are suggested.


<em>Abstract.</em>—The Gila River originates in southwestern New Mexico and courses its way for over 700 km to the west before emptying into the main-stem Colorado River near Yuma, Arizona. Historically, this river was a major watercourse across the Sonora Desert of Arizona. At present, main-stem dams and numerous diversions have markedly altered the historic hydrology of the river. Seventeen native species once occupied the main stem of this large southwest desert river. More than twice that number (40) of nonnative fish species have been introduced into the waters of the Gila over the past century. Currently, less than half of the native fauna is present in the main stem and then primarily in the upper three reaches of the river. The majority of the species (70%) are federally listed as threatened, endangered, or sensitive. The combination of hydrological alteration and accompanying introductions of nonnative, principally sport fishes has basically extirpated the native fauna in all but the uppermost reaches of the Gila River main stem.


<em>Abstract.</em>—The lower Colorado is among the most regulated rivers in the world. It ranks as the fifth largest river in volume in the coterminous United States, but its flow is fully allocated and no longer reaches the sea. Lower basin reservoirs flood nearly one third of the river channel and store 2 years of annual flow. Diverted water irrigates 1.5 million ha of cropland and provides water for industry and domestic use by 22 million people in the southwestern United States and northern Mexico. The native fish community of the lower Colorado River was among the most unique in the world, and the main stem was home to nine freshwater species, all of which were endemic to the basin. Today, five are extirpated, seven are federally endangered, and three are being reintroduced through stocking. Decline of the native fauna is attributed to predation by nonnative fishes and physical habitat degradation. Nearly 80 alien species have been introduced, and more than 20 now are common. These nonnative species thrived in modified habitats, where they largely eliminated the native kinds. As a result, the lower Colorado River has the dubious distinction of being among the few major rivers of the world with an entirely introduced fish fauna.


2010 ◽  
Vol 55 (No. 3) ◽  
pp. 123-136 ◽  
Author(s):  
P. Jurajda ◽  
Z. Adámek ◽  
M. Janáč ◽  
Z. Valová

The aim of this study was to provide the first account of fish and macroinvertebrate communities in a heavily degraded river basin in the Czech Republic. Fish and macrozoobenthos were surveyed at 18 sites in the Bílina River and 11 sites in tributary streams during June–July 2007. Fish were sampled by electrofishing and macrozoobenthos were collected by kick-sampling using a sweep net. The composition of macroinvertebrate assemblages in headwater and reference sites in the upper Bílina River indicated clean water with saprobic index (SI) 1.31–1.43 followed by a transitional stretch downstream the Kyjická reservoir (SI 2.05–2.32) and dramatic decline of water quality to SI 3.18 in the river stretch downstream of industrial and municipal pollution at Litvínov-Záluží. Despite several minor pollution sources on the subsequent downstream river stretch until its mouth into the Elbe River, the water quality indicators fluctuated in the range of lower betamesosaprobity (SI 2.06–2.58). Species richness and biodiversity indices followed a similar pattern as river saprobity. Twenty-three fish species were documented in the Bílina River basin. Chub (<I>Leuciscus cephalus</I>), gudgeon (<I>Gobio gobio</I>) and roach (<I>Rutilus rutilus</I>) were the most frequent species at the Bílina sites. Chub was the most numerous fish in the tributaries. Fish species richness in the longitudinal profile did not increase downstream in the Bílina mainstem, most likely because the presence of reservoirs and water pollution interrupted the river continuum pattern. Qualitative data on fish assemblages corresponded to the course of environmental stress. A sustainable fish community was documented only in the lowermost site in Ústí nad&nbsp;Labem near the confluence with the Elbe River. The Bílina River tributaries constitute potential refuges for fish in this basin.


2016 ◽  
Vol 14 (3) ◽  
Author(s):  
Nara Tadini Junqueira ◽  
Diego Rodrigues Macedo ◽  
Rafael Couto Rosa de Souza ◽  
Robert Mason Hughes ◽  
Marcos Callisto ◽  
...  

ABSTRACT Effects of environmental variables at different spatial scales on freshwater fish assemblages are relatively unexplored in Neotropical ecosystems. However, those influences are important for developing management strategies to conserve fish diversity and water resources. We evaluated the influences of site- (in-stream) and catchment-scale (land use and cover) environmental variables on the abundance and occurrence of fish species in streams of the Upper Araguari River basin through use of variance partitioning with partial CCA. We sampled 38 1st to 3rd order stream sites in September 2009. We quantified site variables to calculate 11 physical habitat metrics and mapped catchment land use/cover. Site and catchment variables explained > 50% of the total variation in fish species. Site variables (fish abundance: 25.31%; occurrence: 24.51%) explained slightly more variation in fish species than catchment land use/cover (abundance: 22.69%; occurrence: 18.90%), indicating that factors at both scales are important. Because anthropogenic pressures at site and catchment scales both affect stream fish in the Upper Araguari River basin, both must be considered jointly to apply conservation strategies in an efficient manner.


Sign in / Sign up

Export Citation Format

Share Document