Historical Changes in Large River Fish Assemblages of the Americas

<em>Abstract.</em>—The Slave River is the largest tributary to Great Slave Lake and the second largest river flowing northward in North America. There are no dams or major industrial developments on the lower Slave River, but further upstream in its Peace and Athabasca tributaries there are numerous pulp mills and a large hydroelectric project (Bennett Dam). These developments appear to have had limited effects on the Slave River fish fauna. The most significant concern is the reduced flood-pulse due to flow regulation, which is hypothesized to have affected spawning success in some species. The other major human impact is from commercial fishing on Great Slave Lake. Migratory species, such as inconnu, have been extirpated from some tributaries due to overfishing. In the Slave River, however, the impact of fishing on inconnu and other species appears to have been less severe. Although the number of age-groups has decreased within some species, the species composition appears to have remained stable. There is little evidence of species introductions into the system, but some rare species<em>, </em>such as chum salmon <em>Oncorhynchus keta</em>, may be extirpated.

<em>Abstract.</em>—The Virgin–Moapa River system supports nine native fish species or subspecies, of which five are endemic. Woundfin <em>Plagopterus argentissimus </em>and Virgin River chub <em>Gila seminuda </em>are endemic to the main-stem Virgin River, whereas cooler and clearer tributaries are home to the Virgin spinedace <em>Lepidomeda mollispinis</em>. Moapa dace <em>Moapa coriacea </em>and Moapa White River springfish <em>Crenichthys baileyi moapae </em>are found in thermal springs that form the Moapa River, and Moapa speckled dace <em>Rhinichthys osculus moapae </em>is generally found below the springs in cooler waters. The agricultural heritage of the Virgin–Moapa River system resulted in numerous diversions that increased as municipal demands rose in recent years. In the early 1900s, trout were introduced into some of the cooler tributary streams, adversely affecting Virgin spinedace and other native species. The creation of Lake Mead in 1935 inundated the lower 80 km of the Virgin River and the lower 8 km of the Moapa River. Shortly thereafter, nonnative fishes invaded upstream from Lake Mead, and these species have continued to proliferate. Growing communities continue to compete for Virgin River water. These anthropogenic changes have reduced distribution and abundance of the native Virgin–Moapa River system fish fauna. The woundfin, Virgin River chub, and Moapa dace are listed as endangered, and the Virgin spinedace has been proposed for listing. In this paper we document how the abundance of these species has declined since the Endangered Species Act of 1973. Currently, there is no strong main-stem refugium for the Virgin River native fishes, tributary refugia continue to be shortened, and the Moapa River native fishes continue to be jeopardized. Recovery efforts for the listed and other native fishes, especially in the Virgin River, have monitored the declines, but have not implemented recovery actions effective in reversing them.


<em>Abstract.</em>—In this paper, we review information regarding the status of the native fishes of the combined Sacramento River and San Joaquin River drainages (hereinafter the “Sacramento–San Joaquin drainage”) and the factors associated with their declines. The Sacramento–San Joaquin drainage is the center of fish evolution in California, giving rise to 17 endemic species of a total native fish fauna of 28 species. Rapid changes in land use and water use beginning with the Gold Rush in the 1850s and continuing to the present have resulted in the extinction, extirpation, and reduction in range and abundance of the native fishes. Multiple factors are associated with the declines of native fishes, including habitat alteration and loss, water storage and diversion, flow alteration, water quality, and invasions of alien species. Although native fishes can be quite tolerant of stressful physical conditions, in some rivers of the drainage the physical habitat has been altered to the extent that it is now more suited for alien species. This interaction of environmental changes and invasions of alien species makes it difficult to predict the benefits of restoration efforts to native fishes. Possible effects of climate change on California’s aquatic habitats add additional complexity to restoration of native fishes. Unless protection and restoration of native fishes is explicitly considered in future water management decisions, declines are likely to continue.


<em>Abstract.</em>—The Rio das Velhas is a tributary of the Rio São Francisco, one of Brazil’s largest rivers. It is the Rio São Francisco’s second most important tributary in water volume (mean annual discharge of 631 m<sup>3</sup>/s), with a drainage area of 27,867 km<sup>2</sup>, length of 761 km, and mean width of 38 m. Like many other rivers around the world, it became heavily polluted in the 1900s. The Rio das Velhas is the most polluted river of Minas Gerais state because the basin contains approximately 4.5 million people. Unlike other Brazilian rivers, its fish fauna was studied from 1850 to 1856. Fifty-five fish species were recorded; 20 of them were first described at that time, when there were previously no more than 40 known species in the entire São Francisco basin. Recent fish collections, approximately 150 years later, indicate 107 fish species, but some may be locally extinct. There are good prospects of rehabilitating this fauna because of the connectivity of the Rio das Velhas with the São Francisco main stem, its well-preserved tributaries, and increased investments in sewage treatment.


<em>Abstract.</em>—From its headwaters in the Rocky Mountains, the Platte River drains 230,362 km<sup>2</sup> in Colorado, Wyoming, and Nebraska. The Platte River is formed by the confluence of the North Platte and South Platte near the city of North Platte, Nebraska, and receives additional flow from the Loup and Elkhorn rivers that drain the Sand Hills region of Nebraska. Water diversions for mining and irrigation began in the 1840s in Colorado and Wyoming, and irrigation diversions in Nebraska began in the 1850s. Construction of dams for control of river flows commenced on the North Platte River in Wyoming in 1904. Additional dams and diversions in the North Platte, South Platte, and Platte rivers have extensively modified natural flow patterns and caused interruptions of flows. Pollution, from mining, industrial, municipal, and agricultural sources, and introductions of 24 nonnative species have also taken their toll. Fishes of the basin were little studied before changes in land use, pollution, and introduction of exotic species began. The current fish fauna totals approximately 100 species from 20 families. Native species richness declines westward, but some species find refugia in western headwaters streams. Declines in 26 native species has led to their being listing as species of concern by one or more basin states.


<em>Abstract.</em>—The interior Río Nazas basin is located in arid north-central México. It is an interior drainage, subject to dewatering since the early 20th century, and sustains wide fluctuations in runoff. It drains 85,530 km<sup>2</sup> and has a major dam in the middle reaches, producing a highly controlled river, with 100% consumption for agriculture and urban use. Hydrologic gauge reports at Torreón from the Comisión Nacional del Agua indicate a 10-year average runoff of 581.9 million m3 from 1936 to 1945, and only 66.4 million m3 in 1972, the last year of recorded runoff. Its 13 known native fish species are of Rio Grande/Rio Bravo origin. Eleven are endemic to the basin complex (only one absent from the study area), seven species have been listed by the Mexican federal government as threatened or endangered, and three are undescribed. The basin has 13 invasive alien species. An index of biological integrity (IBI), based on historical data, was applied to the current fish assemblage at 10 localities in the lower basin, below El Palmito reservoir. The IBI ranged from 50 to 57 at sites in the northern branch, to 39–61 in the southern branches, and to 0–57 from below their junction to the lower reaches, and averaged 37 or very poor. The overall biotic integrity is very low, especially near reservoirs and in the lower reaches of the river, where human activities consume all available water. The main causes of fish loss from this interesting fish fauna are alien invasive species, habitat disruption, pollution, and dewatering.


<em>Abstract.</em>—The Rio Grande is the fourth longest river in North America and the 22nd longest in the world. It begins as a cold headwater stream in Colorado, flows through New Mexico and Texas, where it becomes warm and turbid and finally empties into the Gulf of Mexico. The diversity of native fishes is high in the Rio Grande ranging from freshwater salmonids in its upper reaches to coastal forms in the lower reaches. Historically, about 40 primary freshwater species inhabited the waters of the Rio Grande. Like many rivers throughout North America, the native fish fauna of this river has been irrevocably altered. Species once present are now extinct, others are threatened or endangered, and the majority of the remaining native fishes are declining in both range and numbers. Today, 17 of the 40 primary native freshwater fishes have been either extirpated in part or throughout the Rio Grande drainage. This chapter examines the river, its fauna, and its current plight.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2974 ◽  
Author(s):  
Bunyeth Chan ◽  
Peng Bun Ngor ◽  
Zeb S. Hogan ◽  
Nam So ◽  
Sébastien Brosse ◽  
...  

Inland fisheries management in Cambodia has undergone two major policy reforms over the last two decades. These reforms led to the abolishment of a century-old commercial fishing lot system in 2012 and the establishment of new fish sanctuary and community fishing areas. However, the status of fisheries and fish assemblages following the reforms is not well understood. Here, we investigated the temporal changes in fish catch weight and fish assemblage structure for the period 1995–2000 before fishing lot abolishment (BLA) and for the period 2012–2015 after the removal of all fishing lots (after lot abolishment-ALA) using time-series fish catch data recorded from the Tonle Sap Lake (TSL), one of the world largest inland fisheries. We found (i) mean catch trends vary seasonally, with stable catch trends during the BLA and decreasing catch trends during the ALA and (ii) significant shifts in fish assemblage composition, notably a shift from large-bodied, migratory, and/or predatory species during the BLA toward more short-distance migratory and/or floodplain, small-bodied species during the ALA. Fishing lot abolishment coincided with substantial changes to floodplain habitats and increases in fishing pressure, threatening TSL fish stocks. Flow alterations caused by dams and climate change may exacerbate the problem. Therefore, to realize the fisheries reform objectives, it is imperative to strengthen the fisheries’ governance and management system, including effective law enforcement, institutional strengthening, improved planning, cooperation, and coordination as well as clearly defined roles and responsibilities among concerned stakeholders at all levels.


<em>Abstract.</em>—This book’s objective is to document historical changes in the fish assemblages of large American rivers, and to determine patterns in and rationale for those changes. In this chapter, we review pertinent literature on large rivers and fish assemblages worldwide and briefly introduce the chapters. We expect that the information contained in this book will aid river management in general, and stimulate similar historical fish assemblage studies elsewhere. There will never be a better time to learn and understand what has been changed and to reverse or slow undesirable changes.


2015 ◽  
Vol 75 (3 suppl 1) ◽  
pp. 78-94 ◽  
Author(s):  
TAP Barbosa ◽  
NL Benone ◽  
TOR Begot ◽  
A Gonçalves ◽  
L Sousa ◽  
...  

Abstract The structure of fish assemblages in Neotropical rivers is influenced by a series of environmental, spatial and/or temporal factors, given that different species will occupy the habitats that present the most favourable conditions to their survival. The present study aims to identify the principal factors responsible for the structuring of the fish assemblages found in the middle Xingu River, examining the influence of environmental, spatial, and temporal factors, in addition to the presence of natural barriers (waterfalls). For this, data were collected every three months between July 2012 and April 2013, using gillnets of different sizes and meshes. In addition to biotic data, 17 environmental variables were measured. A total of 8,485 fish specimens were collected during the study, representing 188 species. Total dissolved solids, conductivity, total suspended matter, and dissolved oxygen concentrations were the variables that had the greatest influence on the characteristics of the fish fauna of the middle Xingu. Only the barriers and hydrological periods played a significant deterministic role, resulting in both longitudinal and lateral gradients. This emphasizes the role of the connectivity of the different habitats found within the study area in the structuring of its fish assemblages.


2016 ◽  
Vol 17 (1) ◽  
pp. 302 ◽  
Author(s):  
A. N. ECONOMOU ◽  
S. ZOGARIS ◽  
L. VARDAKAS ◽  
N. KOUTSIKOS ◽  
Y. CHATZINIKOLAOU ◽  
...  

A wide-ranging river fish survey was executed in the summer of 2009 as part of the preparatory actions for the establishment of a monitoring programme for the EU Water Framework Directive (WFD). This was the first extensive electrofishing campaign for WFD standardized bioassessment in Greece and the experience and insights gained are used here to provide a review of fish-based assessment conditions and requirements in this country. The survey sampled 85 sites on 25 rivers throughout mainland Greece, collecting 70 species of freshwater fish. Quantitative site-based assemblage data is used for taxonomic and ordination analyses revealing a strong biogeographic regionalization in the distribution of the ichthyofauna. The structural and spatial organisation of the fish fauna through the use of species-level and community-level data analyses is explored in three ecoregions where data was deemed sufficient. Transitions in community taxonomic composition among ecoregions were abrupt and concordant with geographical barriers and reflect the influence of historical biogeographic processes. Community-based analysis revealed a substantial degree of variation in quantitative attributes of the fish assemblages among ecoregions. Key conclusions of this work are: (a) the fish-based bioassessment system must be regionalised to reflect biogeographic variation, (b) high faunal heterogeneity among ecoregions (taxonomic, structural), and to a lower degree among basins, constrain the transferability of bioassessment metrics and indices created for explicit regions to other regional frameworks; (c) faunal depauperation in most of the study areas reduce the utility of functional bioassessment metrics and also limits the utilization of rare species and the applicability of the classical form of the “Index of Biotic Integrity” concept. Recommendations to cope with these problems are discussed.


Sign in / Sign up

Export Citation Format

Share Document