scholarly journals Rejection Minimization in Parabolic Leaf Spring Manufacturing Unit in India

Author(s):  
Pratesh Jayaswal ◽  
Arun Singh Kushwah

In this paper, practical means of facilitating participatory steps taken in productivity enhancement with the emphasis on rejection minimization programs in parabolic Leaf Spring Manufacturing Unit in India were reviewed. Productivity has been the key factor in any industry and it can be enhanced by minimizing the rejections and down time of machine. Parabolic leaf spring plays a vital role in the suspension system of any automobile, since it has an effect on ride comfort and vehicle dynamics. In this present work, various approaches and efforts made for productivity improvement are discussed with the emphasis on reduction of rejections in terms of End Gap and Camber Less in leaf spring in Parabolic Leaf Spring Manufacturing Unit in India. The output of this work is reduction in production cost via minimizing the rejection, reworking, efficient and economical utilization of all input resources. This work provides an extremely valuable practical framework to companies who recognize the parabolic Leaf Spring Manufacturing.

Author(s):  
Junhong Zhang ◽  
Feiqi Long ◽  
Hongjie Jia ◽  
Jiewei Lin

Abstract Leaf springs play an important role in the handling stability and ride comfort of vehicle. End rubber gaskets are widely used to reduce the friction between leaves, but they also have considerable effect on the stiffness of the suspension assembly. The ride comfort may deteriorate with the stiffness of leaf spring changes. In this paper the influence of the end rubber gasket on the static stiffness performance of a parabolic leaf spring is studied. A finite element model of the leaf spring is developed and verified against the static stiffness test. Effects of the end rubber gasket parameters on the static stiffness of the leaf spring are analyzed based on an orthogonal experiment. The sensitivities of the five parameters are identified including the width, the length, the end thickness, the tail thickness and the distance to the end of the middle leaf. It is found that the contributions can be ranked in descending order as the tail thickness, the end thickness, the distance from end rubber gasket to the end of Leaf 2, and the width and length. The first two factors are considered of significant effects on the leaf spring stiffness. According to single-factor analysis, it is found that under the same load, as the tail thickness and the end thickness increase, the maximum deformation of the rubber gasket decreases, the stiffness of the rubber gasket increases, and the stiffness of the leaf spring increases, which provides a reference for the forward design of the end rubber gasket and the stiffness matching of leaf springs.


Author(s):  
Manas Metar

Abstract: A suspension system is a crucial part of the vehicle system which assists in handling the vehicle and safety of the occupants. From leaf spring type suspension to multi-link suspension and modern adaptive suspension systems, different modifications and researches are practiced to enhance dynamic characteristics of suspension optimizing drivability and ride comfort. The presented study focuses on the analysis of double wishbone suspension system. The components used and working of this suspension are also explained as well as the numerical calculation for creation of the spring is presented. The Finite Element Analysis (FEA) is carried out using Simscale software. The suspension is analyzed through static analysis and results show acceptable values. Keywords: Structural Analysis, Vehicle Suspension System, Double Wishbone Suspension System, Analysis of Suspension System, Finite Element Analysis (FEA), SIMSCALE, Suspension Spring, Suspension Spring Calculation.


2013 ◽  
Vol 380-384 ◽  
pp. 528-531 ◽  
Author(s):  
Xiao Feng Liu ◽  
Xin Hua Xie

Relative to the passive suspension, automotive active suspension car driving more ride comfort and stability, has a vital role to further improve the performance of the vehicle. For such a typically complex active suspension system research, the key issue is the selection of control strategies. The problems in the currently active suspension control strategy, the principle of a simple, effective, this paper, a single neuron PID control strategy used in the automotive active suspension system. The results show that compared with other control strategies, single neuron PID control strategy is reliable, has more advantages.


Author(s):  
Md Tahsin Ishtiaque ◽  
Sung-Hwan Joo

A leaf spring is a simple form of spring commonly used for suspension system of vehicles which is originally called laminated or carriage spring. They perform isolation task in transferring vibration due to road irregularities to driver’s body. To improve the suspension system, many modifications have taken place overtime but recent innovations imply parabolic leaf spring and application of composite materials for these springs. The conventional flat profile of the leaf spring has been transformed into parabolic leaf spring which facilitates lighter, cheaper, better fatigue life and isolating more noise. This project basically includes designing a leaf spring with a conventional flat profile design following the standard dimension (SAE Manual) with acceptable tolerance and regard it as the base model for the project. To obtain the deformation, stress and fatigue life of the base model; a Computer Aided Simulation has been carried out in ANSYS Workbench considering the Structural Steel as the base material. Afterwards, the conventional flat profile design has been changed to parabolic shape consisting 1 Master leaf and 3 graduated leaves. In this case, initially the structural steel has been selected as the base material and later on SAE 5160 steel has been implemented to carry out the simulation. As only spring steel is the material widely used for parabolic leaf spring and many research has been carried out with spring steel, therefore different materials with combination of different spring design has been carried out in this project to get a better life cycle compared to the widely used one. After first modification, number of leaves has been increased to 5 but analysis has been carried out with the same two materials considered for initial simulation. Due to time constraint, the final optimized design has been selected among the analysis finished with the combination of leaves and materials which incorporate the better fatigue life, reduced deformation, reduced weight of the spring and increased factor of safety and later on following the final design (analyzed from CAE results) the parabolic leaf spring has been built with the assistance of a spring shop.


2013 ◽  
Vol 765-767 ◽  
pp. 382-386
Author(s):  
Jian Kun Peng ◽  
Hong Wen He ◽  
Bing Lu

A 7-DOFs vehicle dynamics model which includes active suspension system (ASS) is established, and a LQR controller for active suspension system was designed based on optimal control theory. The simulation models for active suspension system and passive suspension system were built, and a simulation experiment was carried out with MATLAB/Simulink Software. The simulation results show that the optimal control of active suspension system can reduce vertical, roll and pitch accelerations of sprung mass, and the vehicle ride comfort and handling stability were improved effectively.


Author(s):  
Xiang Liu ◽  
Jing-Shan Zhao ◽  
Zhi-Jing Feng

The rectilinear rear-independent suspension investigated in this paper could remain the wheel alignment parameters invariable in theory. However, its dynamics is much more complex than that of the existing suspensions because of its redundant constraints in structure. Considering the elasticity of the rectilinear rear-independent suspension, a rigid-flexible half-car dynamic model is established for the first time based on the discrete time transfer matrix method. At the same time, a rigid half-car dynamic model is established as a comparison. The natural frequency characteristics and dynamic response of the rectilinear rear-independent suspension under random road excitations are analyzed and compared with those of rigid half-car dynamic model. The results reveal that the suspension system has apparent influence to the dynamics of vehicle. The wheel alignment parameters will fluctuate within a narrow range which is mainly determined by the rolling vibration of vehicle. And the suspension system could reduce and filter the road excitations with high frequency and small amplitude. This provides a good effect on the ride comfort of vehicle. Dynamics analysis of the rectilinear rear independent suspension reveals that the proposed modeling approach could deal with the dynamics of rigid-flexible multibody systems with redundant constraints effectively.


Author(s):  
Bo Min Kim ◽  
Dae Sik Ko ◽  
Jong Min Kim

In general, vehicle uses torsional stiffness of a stabilizer bar to control the roll motion. But this stabilizer bar system has problems with degradation for ride comfort and vehicle’s NVH characteristic due to the suspension parasitic stiffness caused by deformation and wear of the stabilizer bar rubber bush. In addition, it is difficult to control the vehicle’s roll motion effectively in case of excessive vehicle roll behavior when it is designed to satisfy ride comfort simultaneously because of the stabilizer bar’s linear roll stiffness characteristic. In this paper, the new anti-roll system is suggested which consists of connecting link, push rod, laminated leaf spring, and rotational bearing. This new concept anti-roll system can minimize the suspension parasitic stiffness by using rotational bearing structure and give the vehicle non-linear roll stiffness by using the laminated leaf spring structure which are composed of main spring and auxiliary one. Reduction of suspension parasitic stiffness and realization of non-linear roll stiffness in this anti-roll system were verified with both vehicle dynamic simulation and vehicle test. Also, this study includes improvement of the system operating efficiency through material change and shape optimization of the leaf spring, and optimal configuration of the force transfer system.


2011 ◽  
Author(s):  
Murathan Soner ◽  
Metin Guven ◽  
Nilay Guven ◽  
Tolga Erdogus ◽  
Mustafa Karaagac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document