scholarly journals STUDY ON IMPROVEMENT IN RSA ALGORITHM AND ITS IMPLEMENTATION

Author(s):  
P. SAVEETHA ◽  
S. ARUMUGAM

The Network Security means to protect data during their transmission over channel of networks similarly Internet Security also to protect data during their transmission over a collection of interconnected networks in all over the world. Cryptography is the way of hiding information during transmission over a cannel. There are lots of cryptographic algorithms available to protect our data from intruders.RSA also one of effective the public key cryptographic algorithm which needs time and memory. Many research papers submitted on this cryptographic algorithm. Each paper has different perspective.

2021 ◽  
Vol 5 (4) ◽  
pp. 768-773
Author(s):  
Aminudin ◽  
Ilyas Nuryasin

The RSA algorithm is one of the cryptographic algorithms with an asymmetric model where the algorithm has two keys, namely the public key and the private key. However, as time goes on, these algorithms are increasingly exposed to security holes and make this algorithm vulnerable to being hacked by people who do not have authority. The vulnerability stems from the algorithm's public keys (e and n). The strength of the RSA algorithm is based on the difficulty of factoring two prime numbers that are generated during the key generation process, if these values ​​can be known using certain methods, the public key and private key values ​​will be found. Therefore, there are many studies that improvise the RSA algorithm, one of which is the Dual Modulus RSA (DM-RSA) algorithm. The algorithm uses four prime numbers which produce 2 modulus and 4 keys (2 public keys and 2 private keys). From the results of the Kraitchik factorization test, it was found that the DM-RSA algorithm was proven to be more resistant up to 2 times or even more than the standard RSA algorithm. This is evidenced by the fact that the value of n is 24 bits, the RSA algorithm can last up to 63204 ms (1 minute 22 seconds) while the Dual Modulus RSA algorithm lasts up to 248494123 ms (142 minutes 47 seconds).  


2021 ◽  
Vol 15 (1) ◽  
pp. 74
Author(s):  
Darsanto Faiz ◽  
Rio Andriyat Krisdiawan ◽  
Dias Eka Prayuda

The investment office and one-stop integrated service (DPMPTSP) of Kuningan regency issues various kinds of permits, one of which is a building permit (IMB) issued by the investment office and one-stop integrated service on the applicant's side. Research is motivated by the vulnerability of counterfeiting permits that have been granted by the investment service and one-stop integrated services. The purpose of this research is to create a system or information technology that can help to make it easier to check building permits, one of which is by using QR-Code technology. This system can scan code that has been encrypted with the RSA algorithm so that the code created is not easily faked or read with similar applications. RSA Cryptography Algorithm, an algorithm used to encrypt and decrypt data. The RSA algorithm itself is an asymmetric algorithm, so it has a public key and a private key. RSA has a basic encryption and decryption process in the concepts of prime numbers and modulo arithmetic. The decryption and encryption keys are both integers. The encryption key is not kept secret and is known to the public so that the encryption key is also known as the public key, but the key for decryption is secret.Keywords: DPMPTSP, QR-Code, RSA Cryptrographic Algorithm


Author(s):  
G. Banu Priya ◽  
K. Dharani

In recent days securing the data while transferring through electronic devices from one end to the other has became a challenging task to both sender and the receiver. During the transmission of private data over the electronic devices may be hacked some times by the hackers. The data can be secured by using the cryptographic concept. This paper is about how the data are protected while transferring the data from one electronics devices to another using the ECC algorithm. Cryptographic algorithms plays an important role in securing the data against malicious attacks. The main goal of cryptography is not only to secure data from being hacked or attacked also it can be used for authentication of users. There are two types of cryptographic algorithms namely Symmetric key cryptographic algorithms and Asymmetric key cryptographic algorithms. Symmetric key cryptographic algorithm uses the only one key for both encryption and decryption process, where as Asymmetric cryptographic algorithm uses two different keys for encrypting and decrypting the messages. The public key is made publicly available and can be used to encrypt messages. The private key is kept secret and can be used to decrypt the received messages. Nowadays, many electronic devices like electronic phones, tablets, personal computers are in the workplace for transferring the data. Elliptical curve cryptography (ECC) is a public key encryption technique based on elliptic curve theory that can be used to create privacy, integrity and confidentiality, faster, smaller, and more efficient cryptographic keys.


2020 ◽  
Vol 5 (1) ◽  
pp. 61-66
Author(s):  
Ainafatul Nur Muslikah ◽  
Hardiana Riski Riswanto ◽  
Khamaida Safinah ◽  
Khadijah Fahmi Hayati Holle

Message sending is one activity that is often used by everyone. However, security in this message delivery system needs to be wary of spying or message piracy during the process of sending messages. Surely someone who sent the message does not know if someone's personal message has been stolen. With this initiative builds a security message using cryptographic RSA algorithm where the message sender or recipient of the message can send the message safely without being known to the message hijacker or spy. Cryptography that uses the RSA algorithm to secure messages. This RSA algorithm message will be decrypted with the public key and to encrypt the message. This application was built on the Android platform because the dominant person has an Android smartphone with a system that runs the length of the message character does not affect the speed at the time of sending the message to the recipient, and there is no limit on the length of the message character during the encryption process so that any length of the massage character can be encrypted well.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Cheman Shaik

In this paper, we present a novel solution to detect forgery and fabrication in passports and visas using cryptography and QR codes. The solution requires that the passport and visa issuing authorities obtain a cryptographic key pair and publish their public key on their website. Further they are required to encrypt the passport or visa information with their private key, encode the ciphertext in a QR code and print it on the passport or visa they issue to the applicant. The issuing authorities are also required to create a mobile or desktop QR code scanning app and place it for download on their website or Google Play Store and iPhone App Store. Any individual or immigration uthority that needs to check the passport or visa for forgery and fabrication can scan its QR code, which will decrypt the ciphertext encoded in the QR code using the public key stored in the app memory and displays the passport or visa information on the app screen. The details on the app screen can be compared with the actual details printed on the passport or visa. Any mismatch between the two is a clear indication of forgery or fabrication. Discussed the need for a universal desktop and mobile app that can be used by immigration authorities and consulates all over the world to enable fast checking of passports and visas at ports of entry for forgery and fabrication


Author(s):  
Sabitha S ◽  
Binitha V Nair

Cryptography is an essential and effective method for securing information’s and data. Several symmetric and asymmetric key cryptographic algorithms are used for securing the data. Symmetric key cryptography uses the same key for both encryption and decryption. Asymmetric Key Cryptography also known as public key cryptography uses two different keys – a public key and a private key. The public key is used for encryption and the private key is used for decryption. In this paper, certain asymmetric key algorithms such as RSA, Rabin, Diffie-Hellman, ElGamal and Elliptical curve cryptosystem, their security aspects and the processes involved in design and implementation of these algorithms are examined.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Yuza Reswan ◽  
Dedy Agung Prabowo

ABSTRACTIt is now commonplace that secrecy must be truly enhanced and tightened as it weighs the emergence of the latest technology that is growing rapidly. Of course an agency, group, or individual have data that is confidential and do not want to be known by other parties hence the need for a system capable of securing the data. For this reason this research aims to create Cryptography application by applying a combination of Hill Cipher and RSA algorithm, Cryptography is also called coding language and I apply Hill Cipher because it is a classical method that uses multiplication for each encoded character while RSA is a modern method that has 2 keys ie key public and secret key where the public key is used for encryption and secret key to retranslate the original form. By applying a combination of classical and modern methods it can be more secure so it is more difficult to be solved by unwanted parties.Keyword : Data Security, Cryptography, Hill Cipher, RSAABSTRAKDi masa sekarang sudah menjadi hal yang biasa bahwa kerahasiaan harus benar – benar ditingkatkan dan diperketat karena menimbang kemunculan teknologi terbaru yang semakin pesat berkembang. Tentu sebuah Instansi, kelompok, ataupun individu memiliki data yang bersifat rahasia dan tidak ingin diketahui oleh pihak lain maka dari itu diperlukannya system yang mampu mengamankan data tersebut. Untuk itulah penelitian ini bertujuan membuat aplikasi Kriptografi dengan menerapkan kombinasi Algoritma Hill Cipher dan RSA, Kriptografi juga disebut bahasa persandian dan saya menerapkan Hill Cipher karena merupakan metode klasik yang menggunakan perkalian untuk tiap karakter yang disandikan sedangkan RSA adalah metode modern yang memiliki 2 kunci yaitu kunci publik dan kunci rahasia dimana kunci publik digunakan untuk penyandian dan kunci rahasia untuk menterjemahkan kembali k bentuk asli. Dengan menerapkan kombinasi metode klasik dan modern ini dapat lebih mengamankan sehingga lebih sulit untuk dapat di pecahkan oleh pihak – pihak yang tidak diinginkan.Kata Kunci : Pengamanan Data, Kriptografi, Hill Cipher, RSA.


2015 ◽  
Vol 14 (12) ◽  
pp. 6361-6367 ◽  
Author(s):  
Ari Shawkat Tahir

RSA cryptographic algorithm used to encrypt and decrypt the messages to send it over the secure transmission channel like internet.  The RSA algorithm is a secure, high quality, public key algorithm. In this paper, a new architecture and modeling has been proposed for RSA public key algorithm, the suggested system uses 1024-bit RSA encryption/decryption for restricted system. The system uses the multiply and square algorithm to perform modular operation. The design has been described by VHDL and simulated by using Xilinx ISE 12.2 tool. The architectures have been implemented on reconfigurable platforms FPGAs. Accomplishment when implemented on Xilinx_Spartan3 (device XC3S50, package PG208, speed -4) which confirms that the proposed architectures have minimum hardware resource, where only 29% of the chip resources are used for RSA algorithm design with realizable operating clock frequency of 68.573 MHz.


Author(s):  
Chuan-Kun Wu

In secure communications, key management is not as simple as metal key management which is supposed to be in a key ring or simply put in a pocket. Suppose Alice wants to transmit some confidential information to Bob over the public networks such as the Internet, Alice could simply encrypt the message using a known cipher such as AES, and then transmit the ciphertext to Bob. However, in order to enable Bob to decrypt the ciphertext to get the original message, in traditional cipher system, Bob needs to have the encryption key. How to let Alice securely and efficiently transmit the encryption key to Bob is a problem of key management. An intuitive approach would be to use a secure channel for the key transmission; this worked in earlier years, but is not a desirable solution in today’s electronic world. Since the invention of public key cryptography, the key management problem with respect to secret key transmission has been solved, which can either employ the Diffie-Hellman key agreement scheme or to use a public key cryptographic algorithm to encrypt the encryption key (which is often known as a session key). This approach is secure against passive attacks, but is vulnerable against active attacks (more precisely the man-in-the-middle attacks). So there must be a way to authenticate the identity of the communication entities. This leads to public key management where the public key infrastructure (PKI) is a typical set of practical protocols, and there is also a set of international standards about PKI. With respect to private key management, it is to prevent keys to be lost or stolen. To prevent a key from being lost, one way is to use the secret sharing, and another is to use the key escrow technique. Both aspects have many research outcomes and practical solutions. With respect to keys being stolen, another practical solution is to use a password to encrypt the key. Hence, there are many password-based security protocols in different applications. This chapter presents a comprehensive description about how each aspect of the key management works. Topics on key management covered by this chapter include key agreement, group-based key agreement and key distribution, the PKI mechanisms, secret sharing, key escrow, password associated key management, and key management in PGP and UMTS systems.


2019 ◽  
Vol 8 (2) ◽  
pp. 5311-5315

RSA Algorithm is one of the widely used asymmetric cryptography. But with several conducts of the different studies, factorization attack based on the value of modulo ‘n’ and based on the public key, the value of the private key is vulnerable. With this, the study modified the RSA Algorithm based on modulo and the public key. The modulo transformed into a new value that produced a compound result in the factorization process. At the same time, the public key has been modified by choosing randomly from collected values and transformed to a different value making it a better-hidden private key. The two algorithms compared in terms of factorization, encryption and decryption, and speed. The modification of the RSA Algorithm based on modulo and public key produced a new two-tier scheme in terms of factorization, and encryption and decryption process. The new scheme in the result is resistant to factorization and has a new scheme of private key hiding.


Sign in / Sign up

Export Citation Format

Share Document