scholarly journals Direct Torque Control Of Permanent Magnet Synchronous Motor

Author(s):  
Anusha Mudili ◽  
P Devendra

The DTC of PMSM is a kind of self control mode for its stator flux linkage and torque .It is very important that if stator flux linkage can be observed well and because the accuracy of the observer for stator flux linkage directly affects the performance of the DTC system of PMSM. In this paper ,for a torque drive with hysteresis controller in the current control loop will be implemented by writing a MATLAB program.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2154 ◽  
Author(s):  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Xingyu Wang ◽  
Xinghua Wang ◽  
Yongliang Ni

In order to improve the performance of the servo control system driven by a permanent magnet synchronous motor (PMSM) under novel direct torque control (NDTC), which, utilizing composite active vectors, fixed sector division criterion, is proposed in this paper. The precondition of the accurate compensations of torque and flux errors is that the sector where the stator flux linkage is located can be determined accurately. Consequently, the adaptive sector division criterion is adopted in NDTC. However, the computation burden is inevitably increased with the using of the adaptive part. On the other hand, the main errors can be compensated through SV-DTC (DTC-utilizing single active vector), while another active vector applied in NDTC can only supply the auxiliary error compensation. The relationships of the two active vectors’ characteristics in NDTC are analyzed in this paper based on the active factor. Furthermore, the fixed sector division criterion is proposed for NDTC (FS-NDTC), which can classify the complexity of the control system. Additionally, the switching table for the selections of the two active vectors is designed. The effectiveness of the proposed FS-NDTC is verified through the experimental results on a 100-W PMSM drive system.


2011 ◽  
Vol 130-134 ◽  
pp. 2828-2831 ◽  
Author(s):  
Yan Ping Xu ◽  
Ke Guo ◽  
Yan Ru Zhong

A high-performance speed sensorless direct torque control (DTC) system of permanent magnet synchronous motor (PMSM) is presented in this paper. The stator flux linkage, speed, rotor position and load torque of PMSM are observed using a fourth-order Extended Kalman Filter (EKF) and a second-order Kalman Filter (KF) and the observed load torque is used for feed-forward compensation of reference torque. Simulation results clearly demonstrate the performance of speed can be improved when load torque is changed and the validity of the proposed control strategy.


2020 ◽  
Vol 306 ◽  
pp. 04007
Author(s):  
Qianni Li ◽  
Aide Xu ◽  
Chaoyi Shang ◽  
Lepeng Huang

This paper proposes a novel deadbeat torque and flux control (DB-DTFC) to reduce torque ripple for switched reluctance motor (SRM). DB-DTFC combines the advantages of direct torque control (DTC) and space-vector modulation (SVM). DB-DTFC leads current vector control into DTC in order to find the equation between torque and current through deadbeat prediction theory i.e. a beat reaches a given point. In addition, the deadbeat calculation module here is similar to that of permanent magnet synchronous motor. Based on dq0 reference frame of SRM, the most suitable dq0 axis current of next moment corresponding to different torque errors is calculated and predicted. According to the calculated dq0 axis current, the optimal space voltage vectors can be selected to reduce torque ripple. In order to verify the effectiveness and correctness of the proposed scheme, DB-DTFC is verified and compared with the DTC-SVM by simulation.


2012 ◽  
Vol 433-440 ◽  
pp. 1576-1581
Author(s):  
Shu Ping Xu ◽  
Shu Rong Wang ◽  
Xiao Hui Su

To overcome integrator initial value, error accumulation and DC offset of pure integration, there proposed a permanent magnet synchronous motor stator flux observation method based on full-dimensional state observer. It uses the stator flux as state vector structural system state equation, the current as the output vector structural system output equation. And it configures the observer poles proportional to the motor model poles and use robust pole assignment algorithm in Matlab for observer gain matrix calculation. Experiments show that the full-dimensional observer on the stator flux observed has higher accuracy. The direct torque control system has better performance.


2012 ◽  
Vol 614-615 ◽  
pp. 1570-1573
Author(s):  
Ying Pei Liu ◽  
Ran Li ◽  
Zhi Chao Zhang

In order to reduce the ripples of flux linkage and torque for direct torque control (DTC) and ensure constant inverter switching frequency, permanent magnet synchronous motor (PMSM) DTC based on space vector modulation (SVM) and extended Kalman filter (EKF) is researched in the paper. Simulation results have shown that the inherent advantages of fast dynamic response of DTC are maintained, and flux linkage and torque ripples are effectively reduced. Speed is estimated accurately, and sensorless operation is realized.


Author(s):  
Hanaa Elsherbiny ◽  
Mohamed Kamal Ahmed ◽  
Mahmoud Elwany

This paper presents a detailed analysis and comparative investigation for the torque control techniques of interior permanent magnet synchronous motor (IPMSM) for electric vehicles (EVs). The study involves the field-oriented control (FOC), direct torque control (DTC), and model predictive direct torque control (MPDTC) techniques. The control aims to achieve vehicle requirements that involve maximum torque per ampere (MTPA), minimum torque ripples, maximum efficiency, fast dynamics, and wide speed range. The MTPA is achieved by the direct calculation of reference flux-linkage as a function of commanded torque. The calculation of reference flux-linkage is done online by the solution of a quartic equation. Therefore, it is a more practical solution compared to look-up table methods that depend on machine parameters and require extensive offline calculations in advance. For realistic results, the IPMSM model is built considering iron losses. Besides, the IGBTs and diodes losses (conduction and switching losses) in power inverter are modeled and calculated to estimate properly total system efficiency. In addition, a bidirectional dc-dc boost converter is connected to the battery to improve the overall drive performance and achieve higher efficiency values. Also, instead of the conventional PI controller which suffers from parameter variation, the control scheme includes an adaptive fuzzy logic controller (FLC) to provide better speed tracking performance. It also provides a better robustness against disturbance and uncertainties. Finally, a series of simulation results with detailed analysis are executed for a 60 kW IPMSM. The electric vehicle (EV) parameters are equivalent to Nissan Leaf 2018 electric car.


Sign in / Sign up

Export Citation Format

Share Document