Clinical Application of Physical Low Frequency Electrical Stimulation in the Treatment of Uterine Involution after Abortion

2021 ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


2006 ◽  
Vol 32 (1) ◽  
pp. 74-80 ◽  
Author(s):  
B. S. Shenkman ◽  
E. V. Lyubaeva ◽  
D. V. Popov ◽  
A. I. Netreba ◽  
O. S. Tarasova ◽  
...  

2021 ◽  
pp. 153575972110035
Author(s):  
Angelique Bordey

[Box: see text]


2018 ◽  
Vol 12 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Julia P. Slopsema ◽  
John M. Boss ◽  
Lane A. Heyboer ◽  
Carson M. Tobias ◽  
Brooke P. Draggoo ◽  
...  

Background: Electrical stimulation is increasingly relevant in a variety of medical treatments. In this study, surface electrical stimulation was evaluated as a method to non-invasively target a neural function, specifically natural sensation in the distal limbs. Method: Electrodes were placed over the median and ulnar nerves at the elbow and the common peroneal and lateral sural cutaneous nerves at the knee. Strength-duration curves for sensation were compared between nerves. The location, modality, and intensity of each sensation were also analyzed. In an effort to evoke natural sensations, several patterned waveforms were evaluated. Results: Distal sensation was obtained in all but one of the 48 nerves tested in able-bodied subjects and in the two nerves from subjects with an amputation. Increasing the pulse amplitude of the stimulus caused an increase in the area and magnitude of the sensation in a majority of subjects. A low frequency waveform evoked a tapping or tapping-like sensation in 29 out of the 31 able-bodied subjects and a sensation that could be considered natural in two subjects with an amputation. This waveform performed better than other patterned waveforms that had proven effective during implanted extra-neural stimulation. Conclusion: Surface electrical stimulation has the potential to be a powerful, non-invasive tool for activation of the nervous system. These results suggest that a tapping sensation in the distal extremity can be evoked in most able-bodied individuals and that targeting the nerve trunk from the surface is a valid method to evoke sensation in the phantom limb of individuals with an amputation for short term applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Da-an Wang ◽  
Qing-zheng Li ◽  
Dong-ming Jia

The capability of regeneration for skeletal muscle after injury depends on the differentiation and proliferation ability of the resident stem cells called satellite cells. It has been reported that electrical stimulation was widely used in clinical conditions to facilitate muscle regeneration after injury, but the characterization of satellite cell responses to the context of low-frequency electrical stimulation in early-phase muscle strain conditions has not been fully clarified. In this study, we aim to investigate the effects of low-frequency electrical stimulation (frequency: 20 Hz; duration: 30 minutes, twice daily) on satellite cell activities in a rat model for the early phase of muscle strain. Firstly, we adopted our previously developed rat model to mimic the early phase of muscle strain in human. After then, we examined the effects of low-frequency electrical stimulation on histopathological changes of the muscle fiber by hematoxylin and eosin (H&E) staining. Finally, we investigated the effects of low-frequency electrical stimulation on satellite cell proliferation and differentiation by quantification of the expression level of the specific proteins using western blot analyses. The muscle strain in biceps femoris muscles of rats can be induced by high-speed rotation from knee flexion 50° to full knee extension at 960°·s-1 angular velocity during its tetany by activating the sciatic nerve, as evidenced by a widening of the interstitial space between fibers, and more edema or necrosis fibers were detected in the model rats without treatment than in control rats. After treatment with low-frequency electrical stimulation (frequency: 20 Hz; duration: 30 minutes, twice daily), the acute strained biceps femoris muscles of rats showed obvious improvement of histomorphology as indicated by more mature muscle fibers with well-ordered formation with clear boundaries. Consistently, the expression levels of the MyoD and myogenin were marked higher than those in the rats in the animal model group, indicating increased satellite cell proliferating and differentiating activities by low-frequency electrical stimulation. This study shows that low-frequency electrical stimulation provides an effective stimulus to upregulate the protein expression of MyoD/myogenin and accelerate the restoration of structure during the early phase of muscle strain. This may have significance for clinical practice. Optimization of low-frequency electrical stimulation parameters may enhance the therapeutic outcome in patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tingting Cao ◽  
Bing Xie ◽  
Siyuan Yang ◽  
Jiaqi Wang ◽  
Xiao Yang ◽  
...  

Acute urinary retention (AUR) is a troublesome urological disease, which causes various lower urinary tract symptoms. However, only few studies explored and evaluated the effective treatments to improve AUR. We aimed to find an effective approach to cure AUR through comparing the efficacy of existing classical low-frequency transcutaneous electrical nerve stimulation (TENS) and novel intravesical electrical stimulation (IVES). A total of 24 AUR female rats were divided into 3 groups as follows: control, TENS, and IVES groups. Rats in the control group had no fake stimulation. Rats in the TENS and IVES groups underwent transcutaneous or intravesical stimulation of a symmetrical biphasic rectangular current pulse with a frequency of 35 Hz, 30 min per day, for seven consecutive days. IVES significantly reduced the actin expression in the submucosal layer but increased its expression in the detrusor layer (p= 0.035,p= 0.001). The neovascularization in the submucosal layer in the IVES group was significantly increased than in the other 2 groups (p= 0.006). Low-frequency IVES performed better than TENS in terms of simultaneously relieving bladder hyperactivity, accelerating epithelial recovery, and strengthening detrusor muscle. IVES may be a promising therapeutic approach for bladder dysfunction, specifically for AUR and overactive bladder in clinical practice.


2018 ◽  
Vol 3 (57) ◽  
Author(s):  
Vytautas Streckis ◽  
Giedrius Gorianovas ◽  
Birutė Miseckaitė ◽  
Valerija Streckienė ◽  
Ronaldas Endrijaitis ◽  
...  

Low frequency fatigue (LFF) in 12—14 year-old adolescent boys (n = 10) doing 75 eccentric jumps performed every20 s from a platform 80 cm high was investigated.Thus the aim of this study was to find out if LFF manifests itself in the muscles of boys aged 12—14 years doing 75 dropjumps performed every 20 s at angles of 90˚ and 135˚ from a platform 80 cm high. The results of the research have shownthat doing 75 eccentric jumps performed every 20 s calls forth LFF in the muscles of boys that is particularly strong anddisappears more slowly at a shorter length of the muscle exercised. Thus, the hypothesis as to the sarcomeric origin ofLFF in the muscles of boys and men has been confirmed. Besides, the muscles of men of mature age are more resistantto LFF than those of boys. This fact, as well as a more acute pain brought about in the muscles of boys, indicates thatthe muscles of boys are less resistant to mechanical damage than those of men of mature age.It is maintained that as a result of the eccentric exercise performed, some portion of the weak sarcomeres gets tornand then the strong sarcomeres, i.e. the ones that develop contraction force have to work at a shorter muscle length.When muscle contraction length is short the sensitiveness of miofibrillas to Ca 2+  decreases. It is rather unexpectedthough that 24 h after the end of the exercise the force developed by electrostimulation at low frequencies (20 Hz) issmaller (p < 0.05), as compared to the initial force registered at a shorter muscle length. Since after the exercise therewas also a decrease in the force developed at a shorter muscle length in particular, the sarcomeres are believed tohave been damaged during eccentric exercise.Keywords: electrical stimulation, force, age, muscle damage, stretch-shortening exercise.


Sign in / Sign up

Export Citation Format

Share Document