Electric Power Distribution Maintenance Crews Routing for Fault Location: Time to Bite the Road-Network Disruptions Bullet

2020 ◽  
Author(s):  
Luiz Desuó N. ◽  
Matheus S. S. Fogliatto ◽  
Michel Bessani ◽  
Rodrigo Z. Fanucchi ◽  
Carlos D. Maciel

The power distribution system is the most critical, among the power systems, in delivering electricity. Consequently, faults that occur in most cases due to the weather, can cause diverse socio-economic impacts. Hence, considering fault location, the lion's share of the literature addresses maintenance crews patrol routing by merely regarding the power distribution system faults, despite possibly blocked roads or devices accessibility be affected by the weather as well. To properly optimize power distribution system crews inspection routing, the blocked roads must be avoided and the optimization must be conducted to reachable devices. This process is initiated by ltering the blocked roads from the road-network, then a genetic algorithm based on permutation operators is employed on the suitably coded solutions. Furthermore, it was proposed a test case, for the optimization procedure, with a road-network, where the blockedroads were gradually included, and a power distribution system. The resulting solutions showed optimized inspection routes that deviate from blocked roads and skipped from unreachable devices, which is a possible consequence of road-network disruptions. In this manner, they may impact on power distribution maintenance crews routing. Therefore, the suggested methodology proved suitable for a maintenance crew routing under road-network blockage.

2021 ◽  
Author(s):  
Anil Yaramasu

This thesis addresses a non-destructive diagnostic method for intermittent arc fault detection and location. Intermittent arc faults appear in aircraft power systems in unpredictable manners when the degraded wires are wet, vibrating against metal structures, or under mechanical stresses, etc. They could evolve into serious faults that may cause on-board fires, power interruptions, system damage and catastrophic incidents, and thus have raised much concern in recent years. Recent trends in solid state power controllers (SSPCs) motivated the development of non-destructive diagnostic methods for health monitoring of aircraft wiring. In this thesis, the ABCD matrix (or transmission matrix) modeling method is introduced to derive normal and faulty load circuit models with better accuracy and reduced complexity compared to the conventional differential equation approach, and an intermittent arc fault detection method is proposed based on temporary deviations of load circuit model coefficients and wiring parameters. Furthermore, based on the faulty wiring model, a genetic algorithm (GA) is proposed to estimate the fault-related wiring parameters, such as intermittent arc location and average intermittent arc resistance. The proposed method can be applied to both the alternating current (AC) power distribution system (PDS) and direct current (DC) PDS. Simulations and experiments using a DC power source have been conducted, and the results have demonstrated effectiveness of the proposed method by estimating the fault location with an accuracy of +/- 0.5 meters on 24.6 meters wire. Unlike the existing techniques which generally requires special devices, the proposed method only needs circuit voltage and current measurement at the source end as inputs, and is thus suitable for SSPC-based aircraft PDS.


2011 ◽  
Vol 403-408 ◽  
pp. 5007-5014
Author(s):  
Pratul Arvind ◽  
Rudra Prakash Maheshwari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. Considering the application of signal processing tools to power systems a talk of modern day research, Gabor decomposition of the current samples are also presented which is utilised for locating all ten types of faults. It is kept in mind that Gabor transform has not been applied to current samples of distribution system as per the literature available till date.


2021 ◽  
Author(s):  
Anil Yaramasu

This thesis addresses a non-destructive diagnostic method for intermittent arc fault detection and location. Intermittent arc faults appear in aircraft power systems in unpredictable manners when the degraded wires are wet, vibrating against metal structures, or under mechanical stresses, etc. They could evolve into serious faults that may cause on-board fires, power interruptions, system damage and catastrophic incidents, and thus have raised much concern in recent years. Recent trends in solid state power controllers (SSPCs) motivated the development of non-destructive diagnostic methods for health monitoring of aircraft wiring. In this thesis, the ABCD matrix (or transmission matrix) modeling method is introduced to derive normal and faulty load circuit models with better accuracy and reduced complexity compared to the conventional differential equation approach, and an intermittent arc fault detection method is proposed based on temporary deviations of load circuit model coefficients and wiring parameters. Furthermore, based on the faulty wiring model, a genetic algorithm (GA) is proposed to estimate the fault-related wiring parameters, such as intermittent arc location and average intermittent arc resistance. The proposed method can be applied to both the alternating current (AC) power distribution system (PDS) and direct current (DC) PDS. Simulations and experiments using a DC power source have been conducted, and the results have demonstrated effectiveness of the proposed method by estimating the fault location with an accuracy of +/- 0.5 meters on 24.6 meters wire. Unlike the existing techniques which generally requires special devices, the proposed method only needs circuit voltage and current measurement at the source end as inputs, and is thus suitable for SSPC-based aircraft PDS.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 141-149 ◽  
Author(s):  
Andres Felipe Panesso-Hernández ◽  
Juan Mora-Flórez ◽  
Sandra Pérez-Londoño

<p>The impedance-based approaches for fault location in power distribution systems determine a faulted line section. Next, these require of the estimation of the voltages and currents at one or both section line ends to exactly determine the fault location. It is a challenge because in most of the power distribution systems, measurements are only available at the main substation.  This document presents a modeling proposal of the power distribution system and an easy implementation method to estimate the voltages and currents at the faulted line section, using the measurements at the main substation, the line, load, transformer parameters and other serial and shunt connected devices and the power system topology. The approach here proposed is tested using a fault locator based on superimposed components, where the distance estimation error is lower than 1.5% in all of the cases. </p>


Author(s):  
Pratul Arvind ◽  
Rudra prakash Maheswari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. A Fuzzy c-mean (FCM) and statistical based approach has been used. Samples are transformed as clusters by use of FCM and fed to Expectation- Maximization (EM) algorithm for classifying and locating faults in an unbalanced distribution system. Further, it is to be kept in mind that the combination has not been used for the above purpose as per the literature available till date.


2020 ◽  
Vol 12 (1) ◽  
pp. 70-83
Author(s):  
Shabbiruddin ◽  
Sandeep Chakravorty ◽  
Karma Sonam Sherpa ◽  
Amitava Ray

The selection of power sub-station location and distribution line routing in power systems is one of the important strategic decisions for both private and public sectors. In general, contradictory factors such as availability, and cost, affects the appropriate selection which adheres to vague and inexact data. The work presented in this research deals with the development of models and techniques for planning and operation of power distribution system. The work comprises a wider framework from the siting of a sub-station to load flow analysis. Work done also shows the application of quantum- geographic information system (Q-GIS) in finding load point coordinates and existing sub-station locations. The proposed integrated approach provides realistic and reliable results, and facilitates decision makers to handle multiple contradictory decision perspectives. To accredit the proposed model, it is implemented for power distribution planning in Bihar which consists of 9 divisions. A Cubic Spline Function-based load flow analysis method is developed to validate the proposal.


Author(s):  
Reza Tajik

Nowadays, the utilization of renewable energy resources in distribution systems (DSs) has been rapidly increased. Since distribution generation (DG) use renewable resources (i.e., biomass, wind and solar) are emerging as proper solutions for electricity generation. Regarding the tremendous deployment of DG, common distribution networks are undergoing a transition to DSs, and the common planning methods have become traditional in the high penetration level. Indeed, in conformity with the voltage violation challenge of these resources, this problem must be dealt with too. So, due to the high penetration of DG resources and nonlinear nature of most industrial loads, the planning of DG installation has become an important issue in power systems. The goal of this paper is to determine the planning of DG in distribution systems through smart grid to minimize losses and control grid factors. In this regard, the present work intending to propose a suitable method for the planning of DSs, the key properties of DS planning problem are evaluated from the various aspects, such as the allocation of DGs, and planning, and high-level uncertainties. Also depending on these analyses, this universal literature review addressed the updated study associated with DS planning. In this work, an operational design has been prepared for a higher performance of the power distribution system in the presence of DG. Artificial neural network (ANN) has been used as a method for voltage monitoring and generation output optimization. The findings of the study show that the proposed method can be utilized as a technique to improve the process of the distribution system under various penetration levels and in the presence of DG. Also, the findings revealed that the optimal use of ANN method leads to more controllable and apparent DS.


2015 ◽  
Vol 30 (2) ◽  
pp. 818-826 ◽  
Author(s):  
Ke Jia ◽  
Tianshu Bi ◽  
Bohan Liu ◽  
Edward Christopher ◽  
David W. P. Thomas ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 199
Author(s):  
Chengwei Lei ◽  
Weisong Tian

Fused contactors and thermal magnetic circuit breakers are commonly applied protective devices in power distribution systems to protect the circuits when short-circuit faults occur. A power distribution system may contain various makes and models of protective devices, as a result, customizable simulation models for protective devices are demanded to effectively conduct system-level reliable analyses. To build the models, thermal energy-based data analysis methodologies are first applied to the protective devices’ physical properties, based on the manufacturer’s time/current data sheet. The models are further enhanced by integrating probability tools to simulate uncertainties in real-world application facts, for example, fortuity, variance, and failure rate. The customizable models are expected to aid the system-level reliability analysis, especially for the microgrid power systems.


Author(s):  
Peyman Mazidi ◽  
G.N. Sreenivas

Distributed Generation (DG) plays an important role in current power systems with high demand growth. DG provides an alternative to the traditional electricity sources like oil, gas, coal, water, etc. and can also be used to enhance the current electrical system. DG distribution is likely to improve the reliability of a power distribution system by at least partially minimizing unplanned power interruptions to customers due to loss of utility generators or due to faults in transmission and distribution lines/equipments. In this paper, a typical distribution system is considered and to show the reliability enhancement of the system, different components (fuses, disconnects, DGs) are step by step taken into account and added to the system in five cases. Analytical methodology is used for the analysis. The results demonstrate that DG does improve the reliability of the distribution system.


Sign in / Sign up

Export Citation Format

Share Document