scholarly journals Synthesis, Characterization and Photocatalytic Performance of Poly-3-Thenoic Acid/Cu-TiO2 Nanohybrid for Efficient Visible Light Assisted Degradation of Bismarck Brown R

2022 ◽  
Vol 19 (1) ◽  
pp. 1715
Author(s):  
Imandi Manga Raju ◽  
Tirukkovalluri Siva Rao ◽  
Miditana Sankara Rao

The present work reported on the synthesis and characterization of Poly-3-Thenoic acid/Cu-TiO2 nanohybrid (PCuT) for the photocatalytic degradation of organic azo dye pollutant from wastewater. The as-synthesized nanohybrid by an in-situ modified sol-gel method including chemical oxidative polymerization was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, UV-visible diffuse reflectance spectroscopy (UV-vis.DRS), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and Brunauer-Emmet-Teller (BET) surface area analysis. The characterization results revealed the formation of small aggregates of polymer contained high crystalline anatase TiO2 nanoparticles (XRD) with narrowed bandgap energy (UV-vis.DRS), decreased particle size (TEM) with smooth surface morphology (SEM) and large surface area (BET). All the constituent elements of the polymer and Cu-TiO2 were found in the PCuT nanohybrid material (EDX) and their chemical interaction studied by FT-IR confirmed the stability of the nanohybrid. The photocatalytic activity of the nanohybrid was tested by the degradation of Bismarck Brown R dye under visible light irradiation. To enhance the photocatalytic efficiency, effects of various catalyst/dye reaction parameters such as polymer content, solution pH, catalyst dosage, and initial dye concentration were studied and optimized. HIGHLIGHTS Poly-3-Thenoic acid/Cu-TiO2 nanohybrid material was successfully synthesized by in situ modified sol-gel process Poly-3-Thenoic acid has enhanced the visible light absorption capacity of anatase TiO2 in nanohybrids Electron-hole recombination in TiO2 was effectively inhibited by Cu doping Bismark Brown R, an organic pollutant was successfully degraded in 75 min of visible light irradiation GRAPHICAL ABSTRACT

2021 ◽  
Author(s):  
Sankara Rao Miditana ◽  
Siva Rao Tirukkovalluri ◽  
Imandi Manga Raju ◽  
Shaik Abdul Alim ◽  
Genji Jaishree ◽  
...  

Abstract The present work mainly aimed to synthesize different weight percentages (0.25-1.00 wt%) of Manganese (Mn2+) and Magnesium (Mg2+) bimetal ions doped TiO2 nanomaterial assisted with different weight percentages (5-15 wt%) of Gemini surfactant (GS) using sol-gel method. The bimetal doped and undoped TiO2 photocatalysts were characterized by X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy, Transmission Electron Microscopy, Brunauer-Emmett-Teller surface area analyzer, and Photoluminescence Spectroscopy. Characterization results revealed that mesoporous multi-particle anatase TiO2 nanoparticles with a narrowed band gap, small particle size, and high surface area were formed due to the combined effect of Mn2+/Mg2+ bimetal ions doping and effective encapsulation of GS over the initially formed TiO2 nanoparticles. The surface elemental composition of the 0.25 wt% Mn2+ and 1.00 wt% Mg2+ bimetal doped TiO2 in the presence of 10 wt% of GS (after calcination) revealed the presence of both the metal dopants Mn2+ and Mg2+ along with the Ti and O and their chemical interactions were further confirmed by FT-IR results. The photocatalytic activity of these catalysts was assessed by the degradation of Methyl Red using visible light irradiation. To understand the effect of different reaction parameters on the photocatalytic activity of the nanocatalysts such as the dopant concentration, surfactant concentration, catalyst dosage, solution pH, and initial dye concentrations were investigated and optimized to achieve the best performance. The photoluminescence results conclude that OH radicals are the crucial reactive species responsible for oxidative photocatalytic degradation of Methyl Red.


2020 ◽  
Author(s):  
Sankara Rao Miditana ◽  
Siva Rao Tirukkovalluri ◽  
Imandi Manga Raju ◽  
Shaik Abdul Alim ◽  
Genji Jaishree ◽  
...  

Abstract The present work mainly aimed to synthesize different weight percentages (0.25-1.00 wt%) of Manganese (Mn2+) and Magnesium (Mg2+) bimetal ions doped TiO2 nanomaterial assisted with different weight percentages (5-15 wt%) of Gemini Surfactant (GS) using sol-gel method. The bimetal doped and undoped TiO2 photocatalysts were characterized by X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy, Transmission Electron Microscopy, Brunauer-Emmett-Teller surface area analyzer, and Photoluminescence Spectroscopy. Characterization results evinced that Mn2+/Mg2+ bimetal ions doping and encapsulation of GS on TiO2 nanoparticles promote the formation of mesoporous multi-particle anatase TiO2 nanocatalysts with a narrowed band gap, less particle size, and high surface area. The surface elemental composition of the 0.25 wt% Mn2+& 1.00 wt% Mg2+ bimetal doped TiO2 in presence of 10 wt% of Gemini surfactant (after calcination) revealed the presence of both the metal dopants Mn2+ and Mg2+ along with the Ti and O and their chemical interactions were further confirmed by FT-IR results. The photocatalytic activity of these catalysts was assessed by the degradation of Methyl Red (MR) using visible light irradiation. To understand the effect of different reaction parameters on the photocatalytic activity of the nanocatalysts such as the dopant concentration, GS concentration, catalyst dosage, solution pH, and initial dye concentrations were investigated and optimized to achieve the best performance. The photoluminescence results conclude that OH radicals are the crucial reactive species responsible for oxidative photocatalytic degradation of MR.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sankara Rao Miditana ◽  
Siva Rao Tirukkovalluri ◽  
Imandi Manga Raju ◽  
Shaik Abdul Alim ◽  
Genji Jaishree ◽  
...  

AbstractThe present work mainly aimed to synthesize different weight percentages (0.25–1.00 wt%) of Manganese (Mn2+) and Magnesium (Mg2+) bimetal ions doped TiO2 nanomaterial assisted with different weight percentages (5–15 wt%) of Gemini surfactant (GS) using sol-gel method. The bimetal doped and undoped TiO2 photocatalysts were characterized by X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy, Transmission Electron Microscopy, Brunauer-Emmett-Teller surface area analyzer, and Photoluminescence Spectroscopy. Characterization results revealed that mesoporous multi-particle anatase TiO2 nanoparticles with a narrowed band gap, small particle size, and high surface area were formed due to the combined effect of Mn2+/Mg2+ bimetal ions doping and effective encapsulation of GS over the initially formed TiO2 nanoparticles. The surface elemental composition of the 0.25 wt% Mn2+ and 1.00 wt% Mg2+ bimetal doped TiO2 in the presence of 10 wt% of GS (after calcination) revealed the presence of both the metal dopants Mn2+ and Mg2+ along with the Ti and O and their chemical interactions were further confirmed by FT-IR results. The photocatalytic activity of these catalysts was assessed by the degradation of Methyl Red using visible light irradiation. To understand the effect of different reaction parameters on the photocatalytic activity of the nanocatalysts such as the dopant concentration, surfactant concentration, catalyst dosage, solution pH, and initial dye concentration were investigated and optimized to achieve the best performance. The photoluminescence results conclude that OH radicals are the crucial reactive species responsible for oxidative photocatalytic degradation of Methyl Red.


2020 ◽  
Author(s):  
Sankara Rao Miditana ◽  
Siva Rao Tirukkovalluri ◽  
Imandi Manga Raju ◽  
Shaik Abdul Alim ◽  
Genji Jaishree ◽  
...  

Abstract The present work mainly aimed to synthesize different weight percentages (0.25-1.00 wt%) of Manganese (Mn2+) and Magnesium (Mg2+) bimetal ions doped TiO2 nanomaterial assisted with different weight percentages (5-15 wt%) of Gemini Surfactant (GS) using sol-gel method. The bimetal doped and undoped TiO2 photocatalysts were characterized by X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy, Transmission Electron Microscopy, Brunauer-Emmett-Teller surface area analyzer, and Photoluminescence Spectroscopy. Characterization results revealed that mesoporous multi-particle anatase TiO2 nanoparticles with a narrowed band gap, small particle size, and high surface area were formed due to the combined effect of Mn2+/Mg2+ bimetal ions doping and effective encapsulation of GS over the initially formed TiO2 nanoparticles. The surface elemental composition of the 0.25 wt% Mn2+& 1.00 wt% Mg2+ bimetal doped TiO2 in presence of 10 wt% of Gemini surfactant (after calcination) revealed the presence of both the metal dopants Mn2+ and Mg2+ along with the Ti and O and their chemical interactions were further confirmed by FT-IR results. The photocatalytic activity of these catalysts was assessed by the degradation of Methyl Red (MR) using visible light irradiation. To understand the effect of different reaction parameters on the photocatalytic activity of the nanocatalysts such as the dopant concentration, GS concentration, catalyst dosage, solution pH, and initial dye concentrations were investigated and optimized to achieve the best performance. The photoluminescence results conclude that OH radicals are the crucial reactive species responsible for oxidative photocatalytic degradation of MR.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 352 ◽  
Author(s):  
Benjawan Moongraksathum ◽  
Jun-Ya Shang ◽  
Yu-Wen Chen

Cu-doped titanium dioxide thin films (Cu/TiO2) were prepared on glass substrate via peroxo sol-gel method and dip-coating process with no subsequent calcination process for the degradation of organic dye and use as an antibacterial agent. The as-prepared materials were characterised using transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). For photocatalytic degradation of methylene blue in water, the samples were subjected to Ultraviolet C (UVC) and visible light irradiation. Degraded methylene blue concentration was measured using UV-Vis spectrophotometer. The antibacterial activities of the samples were tested against the gram-negative bacteria Escherichia coli (ATCC25922). Copper species were present in the form of CuO on the surface of modified TiO2 particles, which was confirmed using TEM and XPS. The optimal observed Cu/TiO2 weight ratio of 0.5 represents the highest photocatalytic activities under both UVC and visible light irradiation. Moreover, the same composition remarkably exhibited high antibacterial effectiveness against E. coli after illumination with ultraviolet A. The presence of CuO on TiO2 significantly enhanced photocatalytic activities. Therefore, active Cu-doped TiO2 can be used as a multipurpose coating material.


Author(s):  
Snehamol Mathew ◽  
Priyanka Ganguly ◽  
Stephen Rhatigan ◽  
Vignesh Kumaravel ◽  
Ciara Byrne ◽  
...  

Indoor surface contamination by microbes is a major public health concern. A damp environment is one potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces using semiconductors like titania (TiO<sub>2</sub>) can effectively curb this growing threat.<b> </b>Metal-doped titania in anatase phase has been proved as a promising candidate for energy and environmental applications. In this present work, the antimicrobial efficacy of copper (Cu) doped TiO<sub>2 </sub>(Cu-TiO<sub>2</sub>) was evaluated against <i>Escherichia coli</i> (Gram-negative) and <i>Staphylococcus aureus</i> (Gram-positive) under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO<sub>2 </sub>was carried out <i>via</i> sol-gel technique. Cu-TiO<sub>2</sub> further calcined at various temperatures (in the range of 500 °C – 700 °C) to evaluate the thermal stability of TiO<sub>2</sub> anatase phase. The physico-chemical properties of the samples were characterised through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron spectroscopy (XPS) and UV-visible spectroscopy techniques. XRD results revealed that the anatase phase of TiO<sub>2</sub> was maintained well, up to 650 °C, by the Cu dopant. UV-DRS results suggested that the visible light absorption property of Cu-TiO<sub>2 </sub>was enhanced and the band gap is reduced to 2.8 eV. Density functional theory (DFT) studies emphasises the introduction of Cu<sup>+</sup> and Cu<sup>2+</sup> ions by replacing Ti<sup>4+</sup> ions in the TiO<sub>2</sub> lattice, creating oxygen vacancies. These further promoted the photocatalytic efficiency. A significantly high bacterial inactivation (99.9%) was attained in 30 mins of visible light irradiation by Cu-TiO<sub>2</sub>.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 105 ◽  
Author(s):  
Huiting Wang ◽  
Jin Mao ◽  
Zhaowei Zhang ◽  
Qi Zhang ◽  
Liangxiao Zhang ◽  
...  

Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium, which is a trichothecene mycotoxin. As the main mycotoxin with high toxicity, wheat, barley, corn and their products are susceptible to contamination of DON. Due to the stability of this mycotoxin, traditional methods for DON reduction often require a strong oxidant, high temperature and high pressure with more energy consumption. Therefore, exploring green, efficient and environmentally friendly ways to degrade or reduce DON is a meaningful and challenging issue. Herein, a dendritic-like α-Fe2O3 was successfully prepared using a facile hydrothermal synthesis method at 160 °C, which was systematically characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It was found that dendritic-like α-Fe2O3 showed superior activity for the photocatalytic degradation of DON in aqueous solution under visible light irradiation (λ > 420 nm) and 90.3% DON (initial concentration of 4.0 μg/mL) could be reduced in 2 h. Most of all, the main possible intermediate products were proposed through high performance liquid chromatography-mass spectrometry (HPLC-MS) after the photocatalytic treatment. This work not only provides a green and promising way to mitigate mycotoxin contamination but also may present useful information for future studies.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2261 ◽  
Author(s):  
Abdul Wafi ◽  
Erzsébet Szabó-Bárdos ◽  
Ottó Horváth ◽  
Mihály Pósfai ◽  
Éva Makó ◽  
...  

Catalysts for visible-light-driven oxidative cleaning processes and antibacterial applications (also in the dark) were developed. In order to extend the photoactivity of titanium dioxide into the visible region, nitrogen-doped TiO2 catalysts with hollow and non-hollow structures were synthesized by co-precipitation (NT-A) and sol–gel (NT-U) methods, respectively. To increase their photocatalytic and antibacterial efficiencies, various amounts of silver were successfully loaded on the surfaces of these catalysts by using a facile photo-deposition technique. Their physical and chemical properties were evaluated by using scanning electron microscopy (SEM), transmission electron microscopy–energy dispersive X-ray spectroscopy (TEM–EDS), Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). The photocatalytic performances of the synthesized catalysts were examined in coumarin and 1,4-hydroquinone solutions. The results showed that the hollow structure of NT-A played an important role in obtaining high specific surface area and appreciable photoactivity. In addition, Ag-loading on the surface of non-hollow structured NT-U could double the photocatalytic performance with an optimum Ag concentration of 10−6 mol g−1, while a slight but monotonous decrease was caused in this respect for the hollow surface of NTA upon increasing Ag concentration. Comparing the catalysts with different structures regarding the photocatalytic performance, silverized non-hollow NT-U proved competitive with the hollow NT-A catalyst without Ag-loading for efficient visible-light-driven photocatalytic oxidative degradations. The former one, due to the silver nanoparticles on the catalyst surface, displayed an appreciable antibacterial activity, which was comparable to that of a reference material practically applied for disinfection in polymer coatings.


Sign in / Sign up

Export Citation Format

Share Document