scholarly journals Effect of Improper Curing on the Properties of Normal Strength Concrete

2018 ◽  
Vol 8 (6) ◽  
pp. 3536-3540
Author(s):  
R. P. Memon ◽  
A. R. M. Sam ◽  
A. Z. Awang ◽  
U. I. Memon

In real applications, 28 days are regarded as proper curing time for concrete. There is a self-evident need to minimize the duration of curing days. For this purpose, this research investigates 1 to 7 days of curing and compares it with concrete cured for 28 days. Three grades of normal concrete strength grade 30, grade 35 and grade 40 were made. After curing, two exposure conditions were applied to the concrete, inside laboratory-controlled environment and outside environment. Results indicate that slump increases with cement content in DOE method at constant water content. The concrete density in all grades reduces when the concrete is subject to inside exposure in comparison with outside exposure. Water loss from concrete reduces with increase in curing days in all concrete grades. Compression strength of all concrete grades increases with increase in curing days. For the uniformity of concrete, ultrasonic pulse velocity indicated that with an increase in curing days, concrete becomes denser and a bit void. Results showed that an increase in curing days also improves the surface quality of concrete. The significance point noticed is that there was not much difference in the concrete properties between 7 days of curing and 28 days of curing in all grades.

2019 ◽  
pp. 22-40
Author(s):  
Khalid Abdel Naser Abdel Rahim

This manuscript investigate the quality of concrete using non-destructive in-situ testing.The in-situ testing is a process by which different test are carried out such as rebound hammer, ultrasonic pulse veloc-ity, initial surface absorption test and fig air, to determine thein-situ strength, durability and deterioration, air permeability, concrete quality control andperformance. Additionally, the quality of concrete was researched using test methods with experimental results. Moreover, this research has found that (1) the increase in w/c ra-tioleads to a decrease in compressive strength and ultrasonic pulse velocity. Thus, lower w/cratio gives a bet-ter concrete strength in terms of quality, (2) the quicker the ultrasonic pulse travels through concrete indicates that the concrete is denser, therefore, better quality, (3) the lower initial surface absorption value indicates a better concrete with respect to porosity and (4) the w/c ratio plays an important role in the strength and per-meability of concrete.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 11 (9) ◽  
pp. 3747
Author(s):  
Leticia Presa ◽  
Jorge L. Costafreda ◽  
Domingo Alfonso Martín

This work aims to study the relationship between the compression resistance and velocity from ultrasonic pulses in samples of mortars with 25% of pozzolanic content. Pozzolanic cement is a low-priced sustainable material that can reduce costs and CO2 emissions that are produced in the manufacturing of cement from the calcination of calcium carbonate. Using ultrasonic pulse velocity (UPV) to estimate the compressive resistance of mortars with pozzolanic content reduces costs when evaluating the quality of structures built with this material since it is not required to perform an unconfined compression test. The objective of this study is to establish a correlation in order to estimate the compression resistance of this material from its ultrasonic pulse velocity. For this purpose, we studied a total of 16 cement samples, including those with additions of pozzolanic content with different compositions and a sample without any additions. The results obtained show the mentioned correlation, which establishes a basis for research with a higher number of samples to ascertain if it holds true at greater curing ages.


There is a substantial curiosity in academia, the investment community and among manufacturers about the exhilarating opportunities offered by nano materials. Although a lot of applications for nanotechnology remain hypothetical, construction is one area where numerous ‘here and now’ applications have already emerged. While existing use is restricted, the market is likely to approach more than 500 million dollars within ten years. Concrete is most likely exceptional in the construction field, that it is the distinct material exclusive to business and hence, is the recipient of a reasonable quantity of research and development capital from the construction industry. SiO2 (Silica) usually is an integral part of concrete in the normal mix. On the other hand, one of the innovations made by the study of concrete at nano scale level is that particle stuffing in concrete can be enhanced by means of adding nano silica (NS), which results in the densification of the micro and nano structure of cementitious composite resulting in enhanced mechanical properties. In this research paper, the result of a thorough investigational analysis on the utilization of NS in addition to cement so that the strength and quality of concrete can improve has been achieved. The effect of various proportions of NS in concrete has been premeditated to evaluate the properties of NS based hardened concrete according to the standard concrete. The obtained outcomes after testing indicate that the addition of NS together with concrete has improved the mechanical behavior of concrete. The NS blended high strength concrete (HSC) shows a better compressive strength (CS) of 66.00 N/mm2 (MPa) after standard twenty eight days, which is an exceptional development over standard concrete. Each and every mixture containing NS in various proportions gave enhanced outcomes in comparison with the standard predictable concrete. RH (Rebound Hammer), UPV (Ultrasonic Pulse Velocity), SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope) examinations further authenticate the above results.


2018 ◽  
Vol 928 ◽  
pp. 257-262 ◽  
Author(s):  
Trong Phuoc Huynh ◽  
Chao Lung Hwang ◽  
Si Huy Ngo

This paper presents the results of the experimental works to investigate the use of waste limestone from water treatment industry as fine aggregate in green concrete. Two concrete mixtures with a constant water-to-binder ratio of 0.3 were prepared for this investigation, in which, the normal concrete mixture was designed following the guidelines of ACI 211 standard, while the green concrete mixture was designed using densified mixture design algorithm (DMDA) technology. For comparison, both types of concrete samples were subjected to the same test program, including fresh properties, compressive strength, strength efficiency of cement, drying shrinkage, electrical surface resistivity, ultrasonic pulse velocity, and thermal conductivity. Test results indicate that both concrete mixtures showed the excellent workability due to the round-shape of waste limestone aggregate and the use of superplasticizer. In addition, the green concrete mixture exhibited a better performance in terms of engineering properties and durability in comparison with the normal concrete mixture. The results of the present study further support the recycling and reuse of waste limestone as fine aggregate in the production of green concrete.


2020 ◽  
Vol 13 (2) ◽  
pp. 222-247 ◽  
Author(s):  
J. P. GODINHO ◽  
T. F. DE SOUZA JÚNIOR ◽  
M. H. F. MEDEIROS ◽  
M. S. A SILVA

Abstract The hydration process of Portland cement triggers reactions of stabilization of minerals from the contact of the clinker with water, which is the Hydrated Calcium Silicate (C-S-H), the Etringite (3CaO.Al2O3.3CaSO4.32H2O) and the Portlandite (Ca(OH)2). In order to understand the effects of the evolution of hydration in cement, it is possible to apply non-destructive tests. In this context, the objective of this work is to evaluate the influence of the type of cement, the curing age, of the format and humidity of the test specimens of concrete in the ultrasonic pulse velocity (UPV). In order to do that, 36 cylindrical test specimens (10 x 20 cm) and 9 cubic ones with 25 cm of edges, with mix proportion of 1:2,7:3,2 (cement/sand/gravel), water/cement ratio of 0.58 and three types of Portland cement (CP II-Z-32, CP IV-32 RS and CP V-ARI) were molded. With data obtained it was possible to correlate the increase of concrete strength along time (at ages of 7, 14, 28, 70 and 91 days) with the increase of the ultrasonic pulse velocity. Besides, it was possible to prove the direct influence of the concrete moisture and of the degree of hydration in the UPV. The shape of the test specimen generally had no influence on the results, except in the case of cement CP V ARI.


2019 ◽  
Vol 8 (3) ◽  
pp. 7488-7492 ◽  

A separate approach of sustainable development is to make the structures durable. More durable structures need to be replaced less frequently and will reduce the need for cement. Such increase in durability can be achieved by choosing appropriate mix designs and selecting suitable aggregates and admixtures. In this experiment sand (fine aggregate) is partially replaced by stone dust to make the concrete mix sustainable in nature. This study also investigates the durability of different types of concrete in acid exposure. Cube compressive strengths of different mixes have been compared to see how the concrete strength differs from original mixes. In addition different types of non-destructive tests such as ultrasonic pulse velocity test, rebound hammer test and half-cell potential tests have also been performed on the concrete samples for better analysis of their strength and durability characteristics. Specimens were analysed through the Scanning Electron Microscope to understand the microstructural changes of concrete samples. Energy dispersion X-ray analysis was also done to understand the changes in the nature of the hydration products of some specimen.


Author(s):  
Ahmed Lasisi ◽  
Obanishola Sadiq ◽  
Ibrahim Balogun

This work investigates the use of Non-destructive tests as a tool for monitoring the structural performance of concrete structures. The investigation encompassed four phases; the first of which involved the use of destructive and non-destructive mechanisms to assess concrete strength on cube specimens. The second phase research focused on site assessment for a twin engineering theatre located at the Faculty of Engineering, University of Lagos using rebound hammer and ultrasonic pulse velocity tester. The third phase was the use of linear regression analysis model with MATLAB to establish a relationship between calibrated strength as well as ultrasonic pulse velocities with their corresponding compressive strength values on cubes and values obtained from existing structures. Results show that the root-mean squared-R2 values for rebound hammer ranged between 0.275 and 0.742 while ultrasonic pulse velocity R2 values were in the range of 0.649 and 0.952 for air curing and water curing systems respectively. It initially appeared that the Ultrasonic pulse velocity was more suitable for predicting concrete strength than rebound hammer but further investigations showed that the latter was adequate for early age concrete while the former was more suited for aging concrete. Hence, a combined use is recommended in this work.


Sign in / Sign up

Export Citation Format

Share Document