scholarly journals Effect of Tile Powder Used as a Cementitious Material on the Mechanical Properties of Concrete

2019 ◽  
Vol 9 (5) ◽  
pp. 4596-4599 ◽  
Author(s):  
N. Bheel ◽  
R. A. Abbasi ◽  
S. Sohu ◽  
S. A. Abbasi ◽  
A. W. Abro ◽  
...  

This study was undertaken to reduce the usage of cement in concrete where different proportions of tile powder as cement replacement were used. Since in the manufacture of cement an exuberant amount of carbon dioxide is disposed of in the environment, this research aims to curtail the dependence on cement and its production. The objective of this work is to investigate the properties of fresh mix concrete (workability) and hardened concrete (compressive and splitting tensile strength) in concrete with different proportions of 0%, 10%, 20%, 30%, and 40% of tile powder as a cement substitute. In this study, a total of 90 concrete samples were cast with mix proportions of 1:1.5:3, 0.5 water-cement ratio, cured for 7, 14 and 28 days. For determining the compressive strength, cubical samples, with dimensions of 100mm×100mm×100mm, were cast, while for the determination of the splitting tensile strength, cylindrical samples with dimensions of 200mm diameter and 100mm height, were tested after 7, 14, and 28 days. The highest compressive strength of concrete achieved for tile powder concrete was 7.50% at 10% replacement after 28days of curing. The splitting tensile strength got to 10.2% when concrete was replaced with 10% of tile powder and cured for 28 days. It was also shown that with increasing percentage of the tile powder content, the workability of the fresh concrete increases.

Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


2018 ◽  
Author(s):  
erniati

Self Compacting Concrete (SCC) is one solution to get concrete construction which it has good resistance. Durability of concrete was obtained by the good concrete compaction to be done by a skilled workforce. However, one of the negligence that often occur in the field ie after casting they was ignoring curing of the hardening concrete. This study discusses the workability of fresh concrete and mechanical properties (compressive strength and splitting tensile strength) on SCC without curing. Testing of the concrete workability based on EFNARC standard. The mechanical properties test based on ASTM standards. The method Compressive strength test based on ASTM standards 39 / C 39M - 12a, whereas splitting tensile strength accordance standard ASTM C496 / C496M-11. The results of the study indicate that the SCC without curing effect on the reduction in compressive strength at ages 1, 3, 7, 28, and 90 days in a row at 4.11 MPa (16.1%); 4.90 MPa (13.9%); 6.64 MPa (13.1%); and 6, 72 MPa (12.75%). Splitting tensile strength decreased respectively by 0.1 MPa (3.25%); 0.26 MPa (7.99%); 0.4 MPa (9.52%); and 0.39 MPa (9.16%).


2019 ◽  
Vol 69 (334) ◽  
pp. 184
Author(s):  
Y. Zhang ◽  
L. Yan ◽  
S. Wang ◽  
M. Xu

The quasi-static and dynamic mechanical behaviours of the concrete reinforced by twisting ultra-high molecular weight polyethylene (UHMWPE) fibre bundles with different volume fractions have been investigated. It was indicated that the improved mixing methodology and fibre geometry guaranteed the uniform distribution of fibres in concrete matrix. The UHMWPE fibres significantly enhanced the splitting tensile strength and residual compressive strength of concrete. The discussions on the key property parameters showed that the UHMWPE fibre reinforced concrete behaved tougher than the plain concrete. Owing to the more uniform distribution of fibres and higher bonding strength at fibre/matrix interface, the UHMWPE fibre with improved geometry enhanced the quasi-static splitting tensile strength and compressive strength of concrete more significantly than the other fibres. The dynamic compression tests demonstrated that the UHMWPE fibre reinforced concrete had considerable strain rate dependency. The bonding between fibres and concrete matrix contributed to the strength enhancement under low strain-rate compression.


2009 ◽  
Vol 405-406 ◽  
pp. 212-218
Author(s):  
Jin Zha ◽  
Bei Xing Li ◽  
Jin Hui Li ◽  
He Gao ◽  
Gong Cui

This paper investigated the mechanical properties, workability, autogenous shrinkage, drying shrinkage and durability of the high performance combined aggregate concrete with the coarse aggregate replaced by the lightweight aggregate in the volume fraction from 0% to 50%. The results demonstrated that the fresh concrete with the lightweight aggregate volume fraction of 10% and 30% had good workability, but degrade with a high volume fraction of 50 %. The hardened concrete with 10% and 30% lightweight aggregate replacement had similar compressive strength and splitting tensile strength comparing to the reference concrete without adding lightweight aggregate. The concrete with 50% lightweight aggregate replacement showed decreased compressive strength and splitting tensile strength. The concrete adding lightweight aggregate exhibited less autogenous shrinkage and drying shrinkage than the reference concrete without adding lightweight aggregate. The autogenous shrinkage and drying shrinkage increased with the increasing lightweight aggregate volume fraction. The concrete containing lightweight aggregate showed good durability after 200 freezing and thawing cycles, but the chloride permeability efficiency of concrete decreased.


2014 ◽  
Vol 629-630 ◽  
pp. 462-466
Author(s):  
Mei Yan Hang ◽  
Ying Jing Lan ◽  
Pei Yu Zhang ◽  
Li Ming Zhang

Abstract: The same amount of mixture ratio of cement, replacing a part of fly ash with a certain amount of mud to research about the workability of fresh concrete and the effect of the mechanical and shrinkage properties of hardened concrete. Test's results show: The different kinds of mud lead that the fluidity of the fresh concrete and the strength of hardened concrete are different. The influence of sand mud is lighter than planting mud on the fluidity and strength of concrete. The compressive strength of concrete decreases and the early shrinkage increase with an increase of mud replaced the fly ash.


2021 ◽  
Vol 107 ◽  
pp. 113-121
Author(s):  
Akeem Ayinde Raheem ◽  
Bolanle Deborah Ikotun ◽  
S. Oyetunde Akinloye

Aggregates constitute 60 – 80% of total concrete constituents. The characteristics of concrete may be affected by the sources from which the aggregate was obtained. The effects of granite sourced from four selected locations within Ogbomoso, Nigeria; on the fresh and hardened properties of concrete were investigated. The granites were obtained from: Asafa (80 4.681 N and 40 20.781 E), Ola-jesu (80 13.591 N and 40 10.11 E), Igbo-ile (80 4.681 N and 40 19.571 E) and Apasu (80 14.961 N and 40 10.051 E). Sieve analysis, specific gravity, moisture content, Aggregate Crushing Value (ACV) and Aggregate Impact Value (AIV) of the granites were determined. The aggregates were used to produce concrete of two different mix ratio-1:2:4 and 1:3:6. Slump and compaction factor tests were carried out on fresh concrete and compressive strength, splitting tensile strength and water absorption on hardened concrete. The results indicated that granite obtained from Asafa and Ola-jesu exhibited improved characteristics over those sourced from Igbo-ile and Apasu and are more suitable for use in producing high-quality concrete.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3517 ◽  
Author(s):  
Li Song ◽  
Fulai Qu ◽  
Guirong Liu ◽  
Shunbo Zhao

The present study concerns the bond behavior of steel bar in concrete under a water environment. This topic was put forward because of the changes of concrete under a water environment and the importance of reliable anchorage of steel bar for reinforced concrete structures. Thirty bond specimens with deformed steel bars were immersed in water and experimentally studied by pull-out tests. The soaking time from 28 day to 360 day and the cubic compressive strength of concrete with 20 N/mm2 and 40 N/mm2 were considered as the main parameters. The results indicate that the moisture content, compressive strength, and splitting tensile strength of concrete are affected by the water environment; the splitting tensile strength varies almost linearly with the compressive strength of concrete; and the descent portion of the bond–slip curve dropped slowly owing to the confinement of stirrups. On the basis of the test data, the formulas for the prediction of bond strength, residual strength, and the corresponding slips with different soaking time are proposed. Finally, the constitutive relation of bond–slip with two portions in the water environment is established with good agreement with the experimental bond–slip curves.


2019 ◽  
Vol 9 (3) ◽  
pp. 4209-4212 ◽  
Author(s):  
N. Bheel ◽  
A. W. Abro ◽  
I. A. Shar ◽  
A .A. Dayo ◽  
S. Shaikh ◽  
...  

In this research, rice husk ash (RHA) was used as a partial substitute for cement in concrete to reduce its cost, and alternative processing methods using agricultural/industrial waste were found. The main objective of this study was to determine the fresh (flowability) and hardened (splitting tensile strength and compressive strength) concrete properties using RHA at 0%, 5%, 10%, 15% and 20% by weight. A total of 90 concrete samples (45 cubes and 45 cylinders) were prepared and cured on 7, 14, and 28 days to the design of target strength 28N/mm2, and ultimately, these concrete specimens were tested on UTM. Three concrete specimens were cast for each proportion and ultimately the average of the three concrete samples was taken as the final result. The flowability of fresh concrete decreases with increasing content of RHA in concrete. The results showed that the compressive and tensile strength of the concrete specimens increased by 11.8% and 7.31%, respectively by using 10% RHA at 28 days curing.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5827
Author(s):  
Adrian Chajec ◽  
Łukasz Sadowski

The article presents a comparative analysis of the impact of the addition of steel and polypropylene fibers on the properties of the concrete mixes and hardened concrete used in the concrete floor industry. The behavior of concrete intended for floors is different from conventional structural concrete because it is formed horizontally; until now, the effect of steel and polypropylene fibers on the properties of concrete formed horizontally has not yet been fully understood. Therefore, the aim of this article is to examine this issue and compare the behavior of concrete modified with steel and polypropylene fibers in concrete that is formed horizontally. The following properties of fresh concrete mixes were analyzed: consistency, the content of air-voids, and bulk density. Consequently, the following properties of hardened concrete were analyzed: compressive strength, bending tensile strength, and brittleness. It was confirmed that steel and polypropylene fibers have a different type of effect on the properties of fresh concrete mixes and hardened concrete. Finally, a combined economic and mechanical analysis was performed.


Sign in / Sign up

Export Citation Format

Share Document