scholarly journals Increasing Gain Evaluation of 2×1 and 2×2 MIMO Microstrip Antennas

2021 ◽  
Vol 11 (5) ◽  
pp. 7531-7535
Author(s):  
M. O. Dwairi

In this paper, a semi-circular ultra-wideband antenna has been modified according to the 2×1 and 2×2 MIMO scenarios. The proposed antennas were designed based on the FR-4 substrate material with dimensions of 36×50mm and 60×60mm for 2×1 and 2×2 scenarios respectively. Simulation results show that a gain improvement of the proposed MIMO antennas from 1 to 2.5dB has been achieved in comparison with the single patch antenna. The radiation pattern for the original and the proposed 2×2 MIMO antennas are exhibited. The main advantage of the proposed antennas is that the gain improves without the need to increase the operating power. This makes the proposed MIMO antennas suitable to be used for UWB antenna applications.

Author(s):  
M. Tarikul Islam ◽  
M. Samsuzzaman ◽  
M. Z. Mahmud ◽  
M. T. Islam

A compact planner patch ultra-wideband (UWB) antenna is presented in this paper. The antenna configuration consists of a spectacles-shaped patch and a slotted ground plane. Different parameters are investigated for improving the antenna’s properties and for achieving the preferred UWB band (3.1–10.6 GHz). The experimental and simulated results demonstrate that the proposed antenna acquires an operating bandwidth of 117% (3–11.5 GHz) with a stable omnidirectional radiation pattern, about 89% of average radiation efficiency and 4.2 dBi of average gain with the maximum of 5.7 dBi at 10.2 GHz.


2014 ◽  
Vol 668-669 ◽  
pp. 1189-1193
Author(s):  
Geng Zhang ◽  
Chi Gao ◽  
Zi Bin Weng

This paper introduces a simple, E-shaped slot loaded wideband microstrip patch antenna with a metallic cavity. The antenna design is an improvement from previous research and it is simulated using HFSS 13 software. The performance of the designed antenna was analyzed in term of bandwidth, gain, VSWR, and radiation pattern. What does the substrate use is air. The results show the wideband antenna is able to operate from 190MHz to 230MHz frequency band with optimum frequency at 210MHz, and the 3-dB radiation beamwidth of the E and the H plane at the 210MHz are 61° and 51°. However, the 3-dB radiation beamwidth of the E and the H plane at the 210MHz can be adjusted to 70° by using a metallic cavity.


Author(s):  
Adib Othman ◽  
Nur Ishmah Sabirah Shaari ◽  
Abdullah M. Zobilah ◽  
Noor Azwan Shairi ◽  
Zahriladha Zakaria

<p>A compact ultra wideband (UWB) antenna for operation at 6 GHz intended for microwave medical imaging (MMI) application is proposed. The microstrip patch antenna (MPA) was design in hexagon shape which is contain H-slot at the centre top of the patch and a slot at the ground. Those slots method is utilised to enhance the operating bandwidth as well as minimising the antenna’s impedance mismatch caused by its proximity to material. Results shows that, the implementation of slot on the patch has profoundly enhance the bandwidth (BW) of the antenna to 503.54 MHz. Measurement of fabricated antenna produce significant result in term of producing wide bandwidth of 520 MHz, with slightly shifting on operating frequency. Therefore, it has been proved that the required performance of UWB antenna has been achieved successfully.</p><p><em> </em></p>


2019 ◽  
Vol 12 (2) ◽  
pp. 148-154
Author(s):  
Nasrin Nemati ◽  
Mohammad Bemani

AbstractIn this paper, a new reconfigurable microstrip fractal ultra-wideband antenna with a capability of variable rejection frequency bands is presented. The main patch of this antenna has two modified C-shaped gaps. Also, on these c-shaped gaps, 10 ideal MEMS switches are used to produce band-notch frequencies at six different frequencies of: 5.4 GHz (5.2–5.5), 5.8 GHz (5.7–5.9), 6.1 GHz (5.9–6.3), 7 GHz (6.9–7.2), 7.9 GHz (7.7–8.1), and 8.4 GHz (8.2–8.6). This antenna is fed by a 50 Ω microstrip line and works in a wide bandwidth of 2.9–11 GHz. The antenna is designed and fabricated on an inexpensive substrate of FR4. Dimensions of the antenna are 31.2 × 38.4 mm. Measurement and simulation results are in good agreement.


2020 ◽  
Vol 55 (4) ◽  
Author(s):  
Amer Abbood Al-Behadili ◽  
Adham R. Azeez ◽  
Sadiq Ahmed ◽  
Zaid A. Abdul Hassain

This paper presents an ultra-wideband tapered slot patch antenna with bi-directional radiation, reconfigurable for dual band-notched capability and fed by coplanar waveguide. The proposed antenna showed excellent ultra-wideband characteristics with bandwidth of (1.9–12 GHz). In order to reduce the interference of the narrow band communications represented by Worldwide Interoperability for Microwave Access radiation in the range (3.4–3.9) GHz and standard IEEE 802.11a. application (from 5.1 GHz to 6.1 GHz), the antenna was accompanied with adjustable dual-stop band capability in these bands. The dual-band notches are achieved with aid of inserting a parasitic single split ring resonator and etching a single circular complementary circle split ring resonator. The proposed antenna used epoxy (FR4) substrate material with ????r= 4.4 and dimensions of .


2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Muhammad Syafiq Noor Azizi ◽  
Azahari Salleh ◽  
Adib Othman ◽  
Najmiah Radiah Mohamad ◽  
Nor Azlan Aris ◽  
...  

In this paper, we study behavior of Ultra wideband antenna which is Rectangular Slotted Microstrip Patch Antenna. Then, the antenna operated in proximity of human arm model. Furthermore, the antenna is designed on a FR-4 substrate with dielectric constant of 4.3 and thickness 1.6 mm. This antenna simulated in CST Microwave Studio software. In order to test the antenna, an arm model was numerically modelled. The study shows properties and performances of antenna when it is placed in three situations which in free space, outside and inside of human arm model. The properties of UWB antenna in term of return loss, gain, directivity and radiation pattern in the three situations is simulated and discussed.


2020 ◽  
Vol 10 (7) ◽  
pp. 2429 ◽  
Author(s):  
Li Hui Dai ◽  
Chong Tan ◽  
Yong Jin Zhou

Stable radiation pattern, high gain, and miniaturization are necessary for the ultra-wideband antennas in the 2G/3G/4G/5G base station applications. Here, an ultrawideband and miniaturized spoof plasmonic antipodal Vivaldi antenna (AVA) is proposed, which is composed of the AVA and the loaded periodic grooves. The designed operating frequency band is from 1.8 GHz to 6 GHz, and the average gain is 7.24 dBi. Furthermore, the measured results show that the radiation patterns of the plasmonic AVA are stable. The measured results are in good agreement with the simulation results.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 7
Author(s):  
Amish Kumar Jha ◽  
Bharti Gupta Gupta ◽  
Preety D Swami

This paper presents an investigation of effect of substrate material properties on the performance of antenna. The simulations are tested for 30 different dielectric materials on the basic RPA antenna model as well as on the most common U shape model using CST Microwave Studio. Two designs are proposed. On the basis of simulation results it has been concluded that for the first design the best material is which has a dielectric constant of 2.7 (𝜀r = 2.7) with bandwidth improvements of around 69.33% to 88.6% as compared to the most frequently used materials at present. For the second design the best result is obtained for the material that has dielectric constant in the range 2.0 to 2.7.  For a material having dielectric constant of 2.1 (𝜀r = 2.1) bandwidth improvement of around 11.74% with respect to RT Duroid was observed. For the second design, radiations from all other materials were not available in the working frequency range of 1GHz to 6GHz.  


2016 ◽  
Vol 850 ◽  
pp. 71-76
Author(s):  
Maisarah Abu ◽  
Nurul Hafiza Izahar ◽  
Najimiah Radiah Mohamad ◽  
Adib Othman ◽  
N.A.M. Aris ◽  
...  

Ultra-wideband (UWB) technology was nowadays increased in interest for various applications due to its distinctive characteristics where it able to carry signals passes through obstacles unlikely narrow-band frequency that tends to reflect the signal. Through this paper, a design of miniaturized implantable UWB antenna utilizing various bio-compatible materials is studied. These materials are to be compared and determined the best material to be used for the design in terms of its return loss, center frequency, bandwidth, antenna gain and total efficiency. The antenna is designed in a structure of circular-ring with slit patch antenna using CPW profile with dimension of 10×10 mm2. As for the materials used in this study are Silicon, PDMS and Teflon PTFE. Each of this substrate has a thickness of 0.5 mm, 2.5 mm, and 1.5 mm correspondingly. After comparing these three materials, the one that gives the best result is Teflon PTFE with return loss at 11.91 GHz and 5.58 GHz bandwidth that covers from 9.16 GHz to 17.74 GHz frequency range. The antenna gives out total gain and efficiency of 2.54 dB and 86.5% respectively.


Sign in / Sign up

Export Citation Format

Share Document