A novel reconfigurable microstrip fractal UWB antenna with six variable rejection frequency bands

2019 ◽  
Vol 12 (2) ◽  
pp. 148-154
Author(s):  
Nasrin Nemati ◽  
Mohammad Bemani

AbstractIn this paper, a new reconfigurable microstrip fractal ultra-wideband antenna with a capability of variable rejection frequency bands is presented. The main patch of this antenna has two modified C-shaped gaps. Also, on these c-shaped gaps, 10 ideal MEMS switches are used to produce band-notch frequencies at six different frequencies of: 5.4 GHz (5.2–5.5), 5.8 GHz (5.7–5.9), 6.1 GHz (5.9–6.3), 7 GHz (6.9–7.2), 7.9 GHz (7.7–8.1), and 8.4 GHz (8.2–8.6). This antenna is fed by a 50 Ω microstrip line and works in a wide bandwidth of 2.9–11 GHz. The antenna is designed and fabricated on an inexpensive substrate of FR4. Dimensions of the antenna are 31.2 × 38.4 mm. Measurement and simulation results are in good agreement.

2021 ◽  
Vol 11 (5) ◽  
pp. 7531-7535
Author(s):  
M. O. Dwairi

In this paper, a semi-circular ultra-wideband antenna has been modified according to the 2×1 and 2×2 MIMO scenarios. The proposed antennas were designed based on the FR-4 substrate material with dimensions of 36×50mm and 60×60mm for 2×1 and 2×2 scenarios respectively. Simulation results show that a gain improvement of the proposed MIMO antennas from 1 to 2.5dB has been achieved in comparison with the single patch antenna. The radiation pattern for the original and the proposed 2×2 MIMO antennas are exhibited. The main advantage of the proposed antennas is that the gain improves without the need to increase the operating power. This makes the proposed MIMO antennas suitable to be used for UWB antenna applications.


Author(s):  
Chaiyong Soemphol ◽  
Niwat Angkawisittpan

<span>A coplanar waveguide</span><em></em><span>fed ultra-wideband antenna with extended transmission band to WLAN frequency is investigated. The proposed antenna consists of a modified </span><span>semi-</span><span>circular patch and staircase of ground plane. The prototype is fabricated on a low cost FR4 substrate with dielectric constant of 4.4</span><span> with thicknes of 0.8 mm. The overall dimensions of proposed UWB antenna are </span><span>34 mm x 40 mm. The simulation and experimental results have been shown that the proposed antenna archives low VSWR over transmission bandwidth from 2.10 - 12.7 GHz to cover both WLAN and UWB bands.  The average gain is 3.87 dBi. It depicts nearly omni-directional radiation pattern like dipole antenna. Moreover, the fabricated prototype antenna shows a good agreement between the simulated and measured results</span>


2015 ◽  
Vol 8 (7) ◽  
pp. 1069-1075 ◽  
Author(s):  
Meenakshi Devi ◽  
Anil Kumar Gautam ◽  
Binod Kumar Kanaujia

A novel design of a compact ultra wideband antenna with triple band-notched characteristics is proposed. Much wider impedance bandwidth (from 2.63 to 13.02 GHz) is obtained by using a star like-shaped radiator and a defected rectangular ground plane and band-notched functions are obtained by attaching L- and I-shaped structure on the ground and a capacitive-loaded loop (CLL) resonator on the patch. The triple band-notch rejection at WiMAX, WLAN, and ITU bands are obtained by attaching I-shape strip, CLL resonator, and flip L-shape, respectively. The parametric study is carried out to study the influence of varying dimensions on the antenna performance. To validate simulation results of the design a prototype is fabricated on the commercially available FR4 material. The measured results reveal that the presented triple band-notch antenna offers a very wide bandwidth of 10.41 GHz (2.63–13.04 GHz) with triple band-notched characteristics at WiMAX (2.94–3.7 GHz), WLAN (5.1–5.9 GHz), and ITU (7.4–8.7 GHz).


2014 ◽  
Vol 711 ◽  
pp. 312-315
Author(s):  
Hui Feng ◽  
Hong Bao Mao ◽  
Guang Zheng Long

A compact and planar dual band antenna for Bluetooth and ultra-wideband (UWB) is presented. The antenna exhibits a dual band operation covering Bluetooth (2.4-2.484 GHz) and UWB (3.1-10.6 GHz) frequency bands. It is composed of a semi-circular and an L-shaped strip and fed by a microstrip line and built on a FR4 substrate with only 23 × 35 mm2surface area. Details of the antenna design and measured results are presented and discussed.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2019 ◽  
Vol 11 (9) ◽  
pp. 948-966 ◽  
Author(s):  
Tale Saeidi ◽  
Idris Ismail ◽  
Wong Peng Wen ◽  
Adam R. H. Alhawari

AbstractThis paper presents the design of an elliptical shape ultra-wide band antenna for imaging of wood. The antenna is constructed comprising an elliptical shape of patch loaded by a stub to resonate at lower bands, strip loading at the back, and chamfered ground. Despite having miniaturized dimensions of 20 mm × 20 mm, the proposed antenna shows better results compared to recent studies. The simulation results depict a good ultra-wide bandwidth from 2.68 to 16 GHz, and 18.2–20 GHz. Besides, the proposed antenna has two low-frequency bands at 0.89–0.92 and 1.52–1.62 GHz, maximum gain of 5.48 dB, and maximum directivity of 6.9 dBi. The measurement outcomes are performed in air, plywood, and high-density wood and show a good agreement with the simulated results done using electromagnetic simulator CST. In addition to that, the measurement results of S-parameters, transmitted and received signals show a good agreement with the simulated results. Besides, the measured results illustrate a good isolation and uniform illumination among arrays as well as the received signals' shapes do not change in different environments, but only the amplitude. Hence, the proposed antenna seems to be adequate for microwave imaging of wood.


2020 ◽  
Vol 10 (7) ◽  
pp. 2429 ◽  
Author(s):  
Li Hui Dai ◽  
Chong Tan ◽  
Yong Jin Zhou

Stable radiation pattern, high gain, and miniaturization are necessary for the ultra-wideband antennas in the 2G/3G/4G/5G base station applications. Here, an ultrawideband and miniaturized spoof plasmonic antipodal Vivaldi antenna (AVA) is proposed, which is composed of the AVA and the loaded periodic grooves. The designed operating frequency band is from 1.8 GHz to 6 GHz, and the average gain is 7.24 dBi. Furthermore, the measured results show that the radiation patterns of the plasmonic AVA are stable. The measured results are in good agreement with the simulation results.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Amin M. Abbosh

A complete design method for a compact uniplanar ultra-wideband antenna with subband rejection capability is presented. A slotline resonator is incorporated in the coplanar waveguide feeder of the antenna to act as a bandstop filter, hence enabling the rejection of any undesired band within the passband of the antenna. Two samples of the proposed antenna were designed and manufactured. One of the developed antennas does not contain a resonator, whereas the other contains a slotline resonator. The designed antennas feature a compact size of 27 mm×27 mm. Results of the simulation and measurement show that the designed antennas have a bandwidth from 3 GHz to more than 11 GHz. The results also reveal that the use of the resonator in the feeder of the antenna efficiently rejects any undesired subband, such as the 4.9–5.9 GHz band assigned for IEEE802.11a and HIPERLAN/2. The gain of the antennas with the resonator is about 2.2 dBi at the passband, while it is less than −8 dBi at the rejected subband.


2021 ◽  
Vol 18 (2) ◽  
pp. 211-224
Author(s):  
Velusamy Mekaladevi ◽  
Devi Nirmala ◽  
Madasamy Jayakumar

The design and realization of a wideband substrate-integrated waveguide (SIW) cavity-backed slot antenna operating at 2.45 GHz for WLAN applications are presented. Dual dumbbell-shaped slots with rectangular slots are used to achieve increased bandwidth. The bandwidth observed is 160 MHz with the dumbbell-shaped slots. Further, it has been improved up to 9.2% by adding a rectangular slot. The wideband antenna is analyzed using ANSYS HFSS and fabricated on FR-4 substrate. The measured results of the proposed design are in good agreement with the simulation results and comparable with the reported results.


Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 245-252 ◽  
Author(s):  
Maryam Kazemi ◽  
Saeedeh Lotfi ◽  
Hesam Siahkamari ◽  
Mahmood Mohammadpanah

AbstractAn ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.


Sign in / Sign up

Export Citation Format

Share Document