scholarly journals Survey on Heart Disease Anticipation Through Genetic Algorithm and BP-Neural Network

Author(s):  
Jaishri ◽  
Santosh Biradar

Medical Diagnosis Systems play a vital role in medical practice and are used by medical practitioners for diagnosis and treatment. In this paper, a medical diagnosis system is presented for predicting the risk of cardiovascular disease. This system is built by combining the relative advantages of genetic algorithm and neural network. Multilayered feed forward neural networks are particularly suited to complex classification problems. The weights of the neural network are determined using genetic algorithm because it finds acceptably good set of weights in less number of iterations. The dataset provided by University of California, Irvine (UCI) machine learning repository is used for training and testing. It consists of 303 instances of heart disease data each having 14 attributes including the class label. First, the dataset is preprocessed in order to make them suitable for training. Genetic based neural network is used for training the system. The final weights of the neural network are stored in the weight base and are used for predicting the risk of cardiovascular disease. The classification accuracy obtained using this approach is 94.17%.

2019 ◽  
Vol 38 ◽  
pp. 117-124
Author(s):  
Guang Hu ◽  
Zhi Cao ◽  
Michael Hopkins ◽  
Conor Hayes ◽  
Mark Daly ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1082
Author(s):  
Fanqiang Meng

Risk and security are two symmetric descriptions of the uncertainty of the same system. If the risk early warning is carried out in time, the security capability of the system can be improved. A safety early warning model based on fuzzy c-means clustering (FCM) and back-propagation neural network was established, and a genetic algorithm was introduced to optimize the connection weight and other properties of the neural network, so as to construct the safety early warning system of coal mining face. The system was applied in a coal face in Shandong, China, with 46 groups of data as samples. Firstly, the original data were clustered by FCM, the input space was fuzzy divided, and the samples were clustered into three categories. Then, the clustered data was used as the input of the neural network for training and prediction. The back-propagation neural network and genetic algorithm optimization neural network were trained and verified many times. The results show that the early warning model can realize the prediction and early warning of the safety condition of the working face, and the performance of the neural network model optimized by genetic algorithm is better than the traditional back-propagation artificial neural network model, with higher prediction accuracy and convergence speed. The established early warning model and method can provide reference and basis for the prediction, early warning and risk management of coal mine production safety, so as to discover the hidden danger of working face accident as soon as possible, eliminate the hidden danger in time and reduce the accident probability to the maximum extent.


2014 ◽  
Vol 490-491 ◽  
pp. 1588-1591
Author(s):  
Liang Zhang ◽  
Hao Yue Sun ◽  
Guo Lv ◽  
Xiao Lu Sun

In this paper, the intelligentized way is applied to detecting anomaly intrusion. Based on the global property of genetic algorithm and the locality of neural network, this method effectively improves the convergence speed of the network and the detection accuracy rate. It not only avoids the defect of the neural network, but also improves the precision.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032010
Author(s):  
Rong Ma

Abstract The traditional BP neural network is difficult to achieve the target effect in the prediction of waterway cargo turnover. In order to improve the accuracy of waterway cargo turnover forecast, a waterway cargo turnover forecast model was created based on genetic algorithm to optimize neural network parameters. The genetic algorithm overcomes the trap that the general iterative method easily falls into, that is, the “endless loop” phenomenon that occurs when the local minimum is small, and the calculation time is small, and the robustness is high. Using genetic algorithm optimized BP neural network to predict waterway cargo turnover, and the empirical analysis of the waterway cargo turnover forecast is carried out. The results obtained show that the neural network waterway optimized by genetic algorithm has a higher accuracy than the traditional BP neural network for predicting waterway cargo turnover, and the optimization model can long-term analysis of the characteristics of waterway cargo turnover changes shows that the prediction effect is far better than traditional neural networks.


2019 ◽  
Vol 15 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Hendri Mahmud Nawawi ◽  
Jajang Jaya Purnama ◽  
Agung Baitul Hikmah

Heart disease is one of the types of deadly diseases whose treatment must be dealt with as soon as possible because it can occur suddenly to the sufferer.  Factors of heart disease that are recognized based on the condition of the body of a sufferer need to be known from an early age so that the risk of possible instant attacks can be minimized or can be overcome in various ways such as a healthy lifestyle and regular exercise that can regulate heart health in the body.  By looking at the condition of a person's body based on sex, blood pressure, age, whether or not a smoker and some indicators that become a person's characteristics of heart disease are described in a study using the Neural Network and Naïve Bayes algorithm with the aim of comparing the level of accuracy to attributes influential to predict heart disease, so the results of this study can be used as a reference to predict whether a person has heart disease or not.


2017 ◽  
pp. 1437-1467
Author(s):  
Joydev Hazra ◽  
Aditi Roy Chowdhury ◽  
Paramartha Dutta

Registration of medical images like CT-MR, MR-MR etc. are challenging area for researchers. This chapter introduces a new cluster based registration technique with help of the supervised optimized neural network. Features are extracted from different cluster of an image obtained from clustering algorithms. To overcome the drawback regarding convergence rate of neural network, an optimized neural network is proposed in this chapter. The weights are optimized to increase the convergence rate as well as to avoid stuck in local minima. Different clustering algorithms are explored to minimize the clustering error of an image and extract features from suitable one. The supervised learning method applied to train the neural network. During this training process an optimization algorithm named Genetic Algorithm (GA) is used to update the weights of a neural network. To demonstrate the effectiveness of the proposed method, investigation is carried out on MR T1, T2 data sets. The proposed method shows convincing results in comparison with other existing techniques.


1993 ◽  
Vol 32 (01) ◽  
pp. 55-58 ◽  
Author(s):  
M. N. Narayanan ◽  
S. B. Lucas

Abstract:The ability of neural networks to predict the international normalised ratio (INR) for patients treated with Warfarin was investigated. Neural networks were obtained by using all the predictor variables in the neural network, or by using a genetic algorithm to select an optimal subset of predictor variables in a neural network. The use of a genetic algorithm gave a marked and significant improvement in the prediction of the INR in two of the three cases investigated. The mean error in these cases, typically, reduced from 1.02 ± 0.29 to 0.28 ± 0.25 (paired t-test, t = −4.71, p <0.001, n = 30). The use of a genetic algorithm with Warfarin data offers a significant enhancement of the predictive ability of a neural network with Warfarin data, identifies significant predictor variables, reduces the size of the neural network and thus the speed at which the reduced network can be trained, and reduces the sensitivity of a network to over-training.


Author(s):  
A. Saravanan ◽  
J. Jerald ◽  
A. Delphin Carolina Rani

AbstractThe objective of the paper is to develop a new method to model the manufacturing cost–tolerance and to optimize the tolerance values along with its manufacturing cost. A cost–tolerance relation has a complex nonlinear correlation among them. The property of a neural network makes it possible to model the complex correlation, and the genetic algorithm (GA) is integrated with the best neural network model to optimize the tolerance values. The proposed method used three types of neural network models (multilayer perceptron, backpropagation network, and radial basis function). These network models were developed separately for prismatic and rotational parts. For the construction of network models, part size and tolerance values were used as input neurons. The reference manufacturing cost was assigned as the output neuron. The qualitative production data set was gathered in a workshop and partitioned into three files for training, testing, and validation, respectively. The architecture of the network model was identified based on the best regression coefficient and the root-mean-square-error value. The best network model was integrated into the GA, and the role of genetic operators was also studied. Finally, two case studies from the literature were demonstrated in order to validate the proposed method. A new methodology based on the neural network model enables the design and process planning engineers to propose an intelligent decision irrespective of their experience.


Sign in / Sign up

Export Citation Format

Share Document