scholarly journals MEASUREMENT OF THE DIELECTRIC PROPERTIES OF LIQUID CRYSTAL MATERIAL FOR MICROWAVE APPLICATIONS

Author(s):  
Juan R. Sanchez ◽  
Vicente Nova ◽  
Carmen Bachiller ◽  
Belen Villacampa ◽  
Alberto De la Rua ◽  
...  

Liquid Crystal (LC) is an anisotropic liquid material which flows like a liquid, but at the same time its molecules have an orientational order like in the solid state [1]. Thus, LC is a promising dielectric material for designing reconfigurable devices at microwave frequencies. In order to optimize the design of reconfigurable microwave devices, accurate values of the dielectric permittivity and the loss tangent of LCs are needed. However, new LCs are not well characterized at these frequencies because of its recent use for microwave applications. Therefore, the characterization in this frequency range is required for its practical use within microwave components and devices [2].   In this work, the split-cylinder resonator method has been used for the characterization of LCs at two frequency points, i.e. 5 and 11 GHz. The method is based on the measurement of the resonance frequency and quality factor of the two states of the LC molecules for extracting the complex dielectric permittivity [3].   For achieving these two states, no electric or magnetic fields are needed, just the cell must be turned 90º inside the cavity. The dielectric properties (permittivity and loss tangent) of four different LC samples, GT3-23002 from Merck and QYPD193, QYPD142, and QYPD036 from Qingdao QY Liquid Crystal Co, have been obtained. The highest values of the dielectric anisotropy are presented for the samples QYPD036 and QYPD193, together with the highest values of the corresponding loss tangent parameters. Furthermore, it is observed for all the LCs that the loss tangent decreases and the dielectric anisotropy increases at higher frequencies, which must be taken into account in the development of reconfigurable microwave devices.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 605
Author(s):  
Ayushi Rastogi ◽  
Fanindra Pandey ◽  
Rajiv Manohar ◽  
Shri Singh

We report the effect of the doping of Cd1−xZnxS/ZnS core/shell quantum dots (CSQDs) in nematic liquid crystal p-methoxybenzylidenep-decylaniline (MBDA) at 0.05 wt/wt%, 0.1 wt/wt%, 0.15 wt/wt%, 0.2 wt/wt%, 0.25 wt/wt%, and 0.3 wt/wt% concentrations of CSQDs in MBDA. Dielectric parameters with and without bias with respect to frequency have been investigated. The change in electro-optical parameters with temperature has also been demonstrated. The increase in the mean dielectric permittivity was found due to the large dipole moment of CSQDs, which impose stronger interactions with the liquid crystal molecules. The dielectric anisotropy changes sign on doping CSQDs in MBDA liquid crystal. It was concluded that the CSQD doping noticeably increased the dielectric permittivity of nematic MBDA in the presence of an electric field. The doping of CSQDs in nematic MBDA liquid crystal reduced the ion screening effect effectively. This phenomenon is attributed to the competition between the generated ionic impurities during the assembling process and the ion trapping effect of the CSQDs. The rotational viscosity of nematic liquid crystal decreased with increasing concentration of the CSQDs, with a faster response time observed for the 0.05 wt/wt% concentration. The birefringence of the doped system increased with the inclusion of CSQDs in MBDA. These results find application in the field of display devices, phase shifters, LC – gratings, TIR waveguide, industries, and projectors.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 449-456 ◽  
Author(s):  
Stanisław Urban ◽  
Jerzy Kędzierski ◽  
Roman Dąbrowski

Abstract Using the experimental data on the dielectric anisotropy, density, polarizability, dipole moment, and order parameter in the nematic phase of seven typical liquid crystalline substances, the applicability of the Maier-Meier theory for the description of the dielectric properties of nematics is checked. Substanc-es with different polarity and different tendency to form associates in the nematic phase were studied. It is found that the Maier-Meier equations describe fairly well the dielectric permittivity components of nematics. The estimated values of the angle β formed by the dipole moment with the long molecular axis are compared with those obtained in other studies


Author(s):  
Ayushi Rastogi ◽  
Fanindra Pandey ◽  
Rajiv Manohar ◽  
Shri Singh

We report the effect of doping Cd1-xZnxS/ZnS core/shell quantum dot (CSQDs) in nematic liquid crystal p-methoxybenzylidene p-decylaniline (MBDA) at 0.05 wt/wt%, 0.1 wt/wt%, 0.15 wt/wt%, 0.2 wt/wt%, 0.25 wt/wt% and 0.3 wt/wt% concentrations of CSQDs in MBDA. Dielectric parameters with and without bias with respect to frequency has been investigated. The change in electro - optical parameters with temperature has also been demonstrated. The increase in the mean dielectric permittivity has been found due to large dipole moment of CSQDs which impose stronger interactions with the liquid crystal molecules. The dielectric anisotropy changes sign on doping CSQDs in MBDA liquid crystal. It was concluded that the CSQDs doping noticeably increases the dielectric permittivity of nematic MBDA in the presence of electric field. The doping of CSQDs in nematic MBDA liquid crystal reduces the ion screening effect effectively. This phenomenon is attributed to the competition between the generated ionic impurities during assembling process and the ion trapping effect of the CSQDs. The rotational viscosity of nematic liquid crystal decreases with increasing concentration of the CSQDs with faster response time observed for 0.05 wt/wt% concentration. The birefringence of the doped system increases with the inclusion of CSQDs in MBDA. These results find application in the field of display devices, phase shifters, industries and projectors.


2017 ◽  
Vol 20 (04) ◽  
pp. 437-441 ◽  
Author(s):  
O.V. Kovalchuk ◽  
◽  
I.P. Studenyak ◽  
V.Yu. Izai ◽  
S.O. Rybak ◽  
...  

The influence of Cu7PS6 nanoparticles with the average size 117 nm on the dielectric properties of planar oriented nematic liquid crystal 6CB has been investigated within the frequency range 101…106 Hz and at the temperature 293 K. It has been shown that when changing the concentration of nanoparticles within the range 0 to 1 wt.%, the conductivity of the liquid crystal changes stronger than its dielectric permittivity. It has been shown that the electrical conductivity increases monotonously with increasing the concentration of nanoparticles. However, for this dependence a saturation effect is observed. The mechanism of this effect was proposed.


1999 ◽  
Vol 603 ◽  
Author(s):  
B. H. Moeckly ◽  
Y. M. Zhang

AbstractSrTiO3 (STO) thin films are promising for a variety of applications requiring tunability. We describe the growth and characterization of STO thin films including their dielectric properties. We also present attempts at reducing the loss tangent of these films, and we discuss their integration with high-temperature superconductor (HTS) microwave filters for trimming purposes.


2014 ◽  
Vol 787 ◽  
pp. 352-356
Author(s):  
Zhi Hong Cheng ◽  
Feng Zhang ◽  
An Ping Huang ◽  
Zhi Song Xiao

In this paper, a novel composite of magneto-dielectric mixture Fe3O4/TiO2 filled polymer PTFE was synthesized for a compact antenna application. Magnetic permeability, dielectric permittivity and related loss were measured and optimized. A planar patch antenna performance based on these composites with a center frequency at 1 GHz was simulated. The simulated antenna performances such as impedance bandwidth and radiation efficiency indicated that the antenna fabricated by this proposed composite could exhibit a better electrical property than that of conventional antenna printed on dielectric material.


Sign in / Sign up

Export Citation Format

Share Document