Comparison of the Effect of Hydrogel and a Solution of Sodium Ascorbate on Dentincomposite Bond Strength After Bleaching

2008 ◽  
Vol 9 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Soodabeh Kimyai ◽  
Hadi Valizadeh

Abstract Aim The aim of this study was to compare the effects of solution and different sodium ascorbate hydrogels on dentin-resin composite shear bond strength subsequent to a bleaching procedure with 10% carbamide peroxide. Methods and Materials Sixty buccal dentin surfaces obtained from intact human third molars were randomly divided into five groups (n=12). Dentin surfaces received different treatments: (1) no treatment; (2) bleaching (10% carbamide peroxide gel); (3) bleaching + 10% sodium ascorbate solution; (4) bleaching + 10% sodium ascorbate hydrogel, and (5) bleaching + 20% sodium ascorbate hydrogel. Dentin surfaces were bonded with Single Bond™ and restored with a composite (Z100). The samples were tested for shear bond strengths. Data was analyzed using analysis of variance (ANOVA) and Tukey tests. Results Significantly higher bond strengths were observed subsequent to treatment with hydrogel and solution forms of sodium ascorbate (p<0.05). No significant differences were demonstrated between different forms of sodium ascorbate preparations. In addition, no significant differences were observed among groups with antioxidant treatment (Groups 3, 4, and 5) and Group 1 (no treatment). Conclusion Reduced bond strength to bleached dentin can be amended by the use of sodium ascorbate as an antioxidant. Clinical Significance Both hydrogel and solution forms of sodium ascorbate can significantly improve the reduced bond strength of resin composite to dentin subsequent to a bleaching procedure with 10% carbamide peroxide. Citation Kimyai S, Valizadeh H. Comparison of the Effect of Hydrogel and a Solution of Sodium Ascorbate on Dentin-composite Bond Strength After Bleaching. J Contemp Dent Pract 2008 February;(9)2:105-112.

Author(s):  
Awiruth Klaisiri ◽  
Nantawan Krajangta ◽  
Niyom Thamrongananskul

Abstract Objective This study examined the effectiveness of different functional monomers in universal adhesives on zirconia/resin composite bond strength both before and after thermocycling. Four universal adhesives (G-premio bond universal, GPU; Clearfil Tri-S bond universal, CTB; Optibond Universal, OBU; Tetric N-bond universal; TNU), one adhesive (single bond 2; SB2), and one ceramic primer (Clearfil ceramic primer plus, CCP) were used in this study. Materials and Methods Zirconia discs were prepared and embedded in acrylic. Specimens were polished and sandblasted with alumina. The specimens were randomly divided into two groups (24 hours and the thermocycled), and each group was divided into six subgroups (n = 10), according to zirconia surfaces treatments: no Tx, CCP + SB2, GPU, CTB, OBU, TNU. An Ultradent mold was located on top of the treated zirconia surface. The resin composite was filled into the mold and then light-cured. A universal testing device was used to determine the shear bond strength. Statistical Analysis The data were statistically analyzed using one-way ANOVA and Tukey's test. Results After water storage for 24 hours, the shear bond strengths were GPU > CCP + SB2 = CTB = OBU = TNU > no Tx (p < 0.05). After thermocycling, the shear bond strengths were CCP + SB2 = GPU = CTB = TNU > OBU > no Tx (p < 0.05). Conclusion The universal adhesives containing 10-MDP exhibited the best performance in the shear bond strength of the zirconia/resin composite interface both before and after thermocycling.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2710 ◽  
Author(s):  
Maroun Ghaleb ◽  
Giovanna Orsini ◽  
Angelo Putignano ◽  
Sarah Dabbagh ◽  
Georges Haber ◽  
...  

This in vitro study aims to evaluate whether a solution of 10% sodium ascorbate (SA) may exert a beneficial effect on the bonding of composite to enamel after using different bleaching agents and protocols. Microtensile bond strength (µTBS) was evaluated on 72 freshly extracted human central incisors, divided into eight experimental groups and one control group (total n = 9): Group 1 serves as control (nonbleached). Group 2 was bleached with 5% carbamide peroxide. Group 3 was bleached with 5% carbamide peroxide and then treated with 10% SA. Group 4 was bleached with 10% carbamide peroxide. Group 5 was bleached with 10% carbamide peroxide, then treated with 10% SA. Group 6 was bleached with 16% carbamide peroxide. Group 7 was bleached with 16% carbamide peroxide, then treated with 10% SA. Group 8 was bleached with 6% hydrogen peroxide. Group 9 was bleached with 6% hydrogen peroxide, then treated with 10% SA. All groups were restored immediately after the different treatments using a resin composite. The µTBS values were measured using a universal testing machine and statistical analysis was performed by means of normality and variance analyses, SIDAK test for univariate test and multiple comparisons, and Student test to compare µTBS values of each group with the control. The mean µTBS values in groups 2, 4, 6, 8 were significantly lower than controls. For groups 3, 5, 7, 9, subjected to antioxidant (10% SA) application, all µTBS values increased significantly. However, only for Groups 3 and 5 there was no significant difference with the control. Applying 10% SA for 10 min may improve the bond strength composite/bleached enamel just when whitening is performed with 5% and 10% carbamide peroxide.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Vajihesadat Mortazavi ◽  
Mohammadhosein Fathi ◽  
Ebrahim Ataei ◽  
Niloufar Khodaeian ◽  
Navid Askari

In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n=12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA,t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP.


2020 ◽  
pp. 11-14
Author(s):  
Sonali Mahadevia ◽  
Bhavya Trivedi ◽  
Arth Patel ◽  
Mauli Shah ◽  
Vaishali Gayakwad

Objective: The aim of this study was to assess the shear bond strength of indirectly and directly bonded orthodontic brackets. Ninety Methods: extracted human premolars were collected and divided into two groups. In both the groups, direct bonding (group 1) and indirect bonding (group 2) a light-cured adhesive and primer (ENLIGHT LV) was used. Forty hours after bonding, the samples were De-bonded. Results: Mean shear bond strengths were 12.33, and 12.18 MPA for groups 1, and 2, respectively. The Independent Sample T-Test showed no signicant difference in mean bond strength between groups (P =.667). Conclusion: The result also showed that there was no statistically signicant difference in the shear bond strength between the direct and indirect bonding methods.


2018 ◽  
Vol 20 (3) ◽  
pp. 71-79
Author(s):  
Funda Fundaoĝlu Küçükekenci DDS ◽  
Ahmet Serkan Küçükekenci DDS, PhD ◽  
Süleyman Kutalmiş Büyük DDS, PhD

Purpose: The purpose of this study was to evaluate the effects of the application of antioxidant on the shear bond strengths (SBS) of orthodontic brackets bonded to human enamel after extra-coronal bleaching with hydrogen peroxide (HP). Materials and methods: Fifty freshly extracted premolars were randomly divided into three groups. One group (Group 1) was bleached with 40% HP (n=20), another group (Group 2) was bleached with 40% HP and activated with an Nd: YAG laser (n=20), and a control group (Group 3) received no treatment (n=10). After the bleaching procedure, Groups 1 and 2 were further divided into two subgroups (Group 1a, Group 1b, Group 2a, and Group 2b). Specimens in Groups 1a and 2a (n=10) received no antioxidant application. A 10% sodium ascorbate solution was applied to specimens in Groups 1b and 2b (n=10). The brackets were then bonded with light-cure adhesive paste to the enamel surfaces of all experimental groups. Specimens were subjected to SBS tests for debonding. Results: The SBS of brackets bonded in Groups 1 and 2 were significantly lower than those of brackets bonded to the control group (p<0.001); however, no statistically significant differences in SBS were noted in Groups 1 and 2 (p>0.001). The antioxidant-treated SBS of brackets in Groups 1b and 2b were significantly higher than those of Groups 1a and 2a (p<0.001). Conclusions: The application of 40% HP had a negative effect on the bond strength. The use of antioxidant for 15 min resulted in the reversal of failed bond strength.


Author(s):  
Rajith Radhakrishnan ◽  
Ravikumar Nesamani ◽  
Kavitha Sanjeev ◽  
Mahalaxmi Sekar

Introduction: The search to replace the chemical bleaching agent namely the Hydrogen Peroxide (HP) with a natural substance to whiten the discoloured tooth is a need of the hour, due to the severe roughing and compromised bonding of resin composite to enamel surface by this agent. Aim: To evaluate and compare the colour and surface changes in enamel surface, and the micro-shear bond strength of resin composite to enamel following bleaching with 35% HP and 2% Strawberry Extract (SE). Materials and Methods: In this in-vitro study, 30 bovine maxillary central incisors were decoronated and allocated randomly to two groups: group 1 (negative control) (n=15) and group 2 (experimental) (n=15). To evaluate the bleaching efficacy, group 2 specimens were experimentally stained with tea. Baseline colour coordinates (pre-bleach values) (L*, a*, b*) (∆E) were recorded. The crowns were sectioned to obtain four equal parts to obtain 60 specimens and these were allotted randomly to 4 subgroups a, b, c, d (n=15 each) based on the bleaching protocol. Subgroup a, Hydrogen Peroxide (HP). subgroup b, Strawberry Extract (SE); subgroup c, HP+SE (HPS); subgroup d, HP/P (HP/ Proanthocyanidin). Following bleaching, colour coordinates (post-bleach values) (L*, a*, b*) (∆E) were measured as mentioned before. Qualitative analysis of the surface (n=2) for each group was performed using scanning electron microscopy. Micro-shear bond strength of resin composite to the treated specimens (n=13) was determined using universal testing machine at a crosshead speed of 1 mm/min. Kruskal-Wallis one-way Analysis of Variance (ANOVA) was used to calculate the p-value and Post-Hoc Tukey Honest significant Test (HSD) was used to identify the significant groups, p-value (<0.05). Results: All the post-bleach specimens showed significantly higher mean ∆E (more whiter) values compared to their respective pre-bleach specimens (baseline values) (p-value -<0.05). Among the post-bleach groups, highest ∆E values (more whiter) were observed in subgroup 2c(HPS) (p-value=0.029). Similarly minimal morphological surface irregularities were observed in HPS. Group 1 (negative control) had the highest micro-shear bond strength compared to the experimental groups (group 2). Significantly, higher micro-shear bond strength was observed in subgroups 2b,c,d (SE, HPS, HPP) compared to subgroup 2a(HP) (p-value <0.001). Conclusion: SE alone or in combination with HP is an efficient and effective dental bleaching agent.


2021 ◽  
Vol 54 (2) ◽  
pp. 87
Author(s):  
Indes Rosmalisa Suratno ◽  
Irfan Dwiandhono ◽  
Ryana Budi Purnama

Background: Tooth discoloration can be treated with tooth bleaching. Bleaching using 40% hydrogen peroxide can reduce the shear bond strength of resin composite because there are free radicals on the tooth surface, so it can delay the restoration. The application of antioxidants can eliminate free radicals after the bleaching procedure and increase the shear bond strength of the composite resin. The common antioxidants are ascorbic acid and natural ingredients, such as pomegranate (Punica granatum L.). Purpose: To determine the effect of pomegranate extract gel on the shear bond strength of composite resin after 40% hydrogen peroxide bleaching application. Methods: This research used 32 maxillary first premolars that were divided into four groups. The samples were bleached, then the labial was prepared and antioxidant gel was applied: group P1 pomegranate gel extract of 5%, group P2 pomegranate gel extract of 10%, group K1 positive control ascorbic acid gel of 10% and group K2 as the negative control. The samples were restored with a nanohybrid composite resin. The shear bond strength was tested using a universal testing machine. The data were tested using a one-way ANOVA followed by a post-hoc LSD test. Results: The pomegranate gel extract increased the shear bond strength of the composite resin after the bleaching procedure of 40% hydrogen peroxide compared with the ascorbic acid gel group and the negative control group. The one-way ANOVA test showed a significant difference (p<0.05). The post-hoc LSD test showed significant differences between the treatment and negative control groups (p<0.05). Conclusion: The pomegranate gel extract as an antioxidant increased the shear bond strength of the composite resin restoration after the 40% hydrogen peroxide bleaching application.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Horieh Moosavi ◽  
Hamideh Sadat Mohammadipour ◽  
Marjaneh Ghavamnasiri ◽  
Sanaz Alizadeh

The aim of this study was to evaluate the effect of bleaching and thermocycling on microshear bond strength of bonded resin composites to enamel. Enamel slices were prepared from ninety-six intact human premolars and resin composite cylinders were bonded by using Adper Single Bond 2 + Filtek Z350 or Filtek silorane adhesive and resin composite. Each essential group was randomly subdivided to two subgroups: control and bleaching. In bleaching group, 35% hydrogen peroxide was applied on samples. Thermocycling procedure was conducted between 5°C and 55°C, for 3.000 cycles on the half of each subgroup specimen. Then microshear bond strength was tested. Methacrylate-based resin composite had higher bond strength than silorane-based one. The meyhacrylate-based group without bleaching along with thermocycling showed the most bond strength, while bleaching with 35% carbamide peroxide on silorane-based group without thermocycling showed the least microshear bond strength. Bleaching caused a significant degradation on shear bond strength of silorane-based resin composites that bonded using self-etch adhesive resin systems.


2013 ◽  
Vol 07 (01) ◽  
pp. 055-060 ◽  
Author(s):  
Mehmet Akin ◽  
Sertac Aksakalli ◽  
Faruk Ayhan Basciftci ◽  
Abdullah Demir

ABSTRACTObjective: The purpose of this study was to determine the effect of 10% carbamide peroxide and 38% hydrogen peroxide bleaching agents on the shear bond strength of orthodontic brackets using self-etching primer systems.Methods: Forty five freshly extracted human premolar teeth were randomly divided into 3 groups of 15 teeth each: control (group 1), 10% carbamide peroxide at-home bleached (group 2), and 38% hydrogen peroxide in-office bleached (group 3). Three weeks later, all brackets were bonded using a self-etching primer system. The shear bond strength of these brackets was measured and recorded in MPa. Adhesive remnant index (ARI) scores were determined after the brackets failed. Data were analyzed using Kruskal- Wallis test, pairwise comparisons were made using the Mann-Whitney U test and ARI scores were analyzed using a chi-square test at a significance level of P<.05.Results: The shear bond strengths of group 1 (mean: 17.7 ± 9.7 MPa) were significantly higher (P<.05) than those of group 3 (mean: 9.9 ± 5.4 MPa). No significant differences were found between group 2 (mean: 12.3 ± 4.7) and either group 1 or group 3 (P>.05). ARI scores did not differ significantly among the 3 groups.Conclusions: The use of 10% carbamide peroxide bleaching does not significantly reduce shear bond strength values. In contrast, use of 38% hydrogen peroxide bleaching significantly reduces these values. (Eur J Dent 2013;7:55-60)


2020 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Paul Nahas ◽  
Samir Nammour ◽  
Elie Gerges ◽  
Toni Zeinoun

(1) Background: Bonding composite to tooth structure is still evolving with a substitute for phosphoric acid being the main challenge. Lately, a self-adhering composite (SAC) was developed, promising to simplify bonding to tooth structure. Unfortunately, retention especially to dentin, was not as good as the gold standard three steps bonding system. During the last 2 decades, lasers were used to enhance shear bond strength of composite to tooth structure. However, the literature provided limited information regarding laser efficiency in the immediate, as well as the long term, adhesion success of SACs to dentin. The purpose of our study was to define the optimal irradiation conditions to improve the adhesion of self-adhering flowable resin composite to dentin exposed to Er:YAG and Er,Cr:YSGG laser irradiation. (2) Methods: Seventy-two freshly extracted human third molars, prepared to have flat dentinal surfaces, were randomly divided into three groups (n = 24) including a control group (Group 1) in which dentin was left without laser irradiation. The other two groups (Group 2 and 3) received standardized irradiation at a speed of 1 mm/second with Er:YAG (60 mJ; SSP mode = 50 μs; 10 Hz; fluency of 9.4 J/cm2; beam diameter: 0.9 mm; air 6 mL/min; and water 4 mL/min), and Er,Cr:YSGG: 1.5 W; fluency of 17.8 J/cm2; turbo handpiece with MX5 short insert; 20 Hz under air/water spray (65% air, 55% water). Self-adhering flowable resin was applied to dentin in all groups. Half of the specimens were stored in water for 24 h while the other half underwent 3000 thermal cycles. Later, all specimens received a shear bond strength test. Fracture observation was done first under a stereomicroscope then by using a scanning electron microscope. (3) Results: The mean values of shear bond strength for both laser-treated dentin groups (Er:YAG laser: 13.10 ± 1.291, and Er,Cr:YSGG: 14.04 ± 5.233) were higher than in the control group 1 (8.355 ± 2.297) before thermocycling. After thermocycling, shear bond strength decreased in all groups as follows: 10.03 ± 1.503, 10.53 ± 2.631, and 02.75 ± 1.583 for Er:YAG, Er,Cr:YSGG, and nonirradiated dentin, respectively. Shear bond strength values showed a significant difference between the control group (Group 1) and both lasers groups (Group 2 and 3). Statistical analysis of stereomicroscope observation revealed no significant difference between laser irradiation and failure mode (p < 0.136). SEM observation of the dentin surface in both laser-irradiated groups showed opened tubules, absence of smear layer as well as an increase of resin infiltration into dentinal tubules. (4) Conclusion: Er:YAG and Er,Cr:YSGG lasers enhance self-adhering flowable resin shear bond strength values and improve its longevity by eliminating the smear layer, opening dentinal tubules and increasing resin infiltration into the microstructure.


Sign in / Sign up

Export Citation Format

Share Document