scholarly journals Microtensile Bond Strength of Polyacid-modified Composite Resin to Irradiated Primary Molars

2018 ◽  
Vol 19 (2) ◽  
pp. 189-195
Author(s):  
Yucel Yilmaz ◽  
Sultan Keles ◽  
Orhan Sezen

ABSTRACT Aim This study evaluated the influence of various doses of radiotherapy on the microtensile bond strength (μTBS) of compomer resin to dentin and enamel in primary molars. Materials and methods Thirty-five intact primary molars were collected and divided into seven groups. Teeth were irradiated with doses from 10 to 60 Gy, except for the control group. Compomer restorations were performed, and enamel—compomer resin beams and dentin—compomer resin beams were tested at a crosshead speed of 1 mm/min. Results No statistically significant difference was found between the irradiated tooth enamel and the control group (F = 1.1468; p = 0.194). However, statistically significant differences were evident among the dentin groups (F = 11.050; p < 0.001). Conclusion Radiation may not cause a significant difference in the μTBS of compomer resin to primary tooth enamel, but appears to dose dependently decrease its bond strength to primary tooth dentin. Clinical significance Radiotherapy may affect the success rate of compomer fillings in primary teeth, especially in deeper cavities with exposed dentin. How to cite this article Keles S, Yilmaz Y, Sezen O. Microtensile Bond Strength of Polyacid-modified Composite Resin to Irradiated Primary Molars. J Contemp Dent Pract 2018;19(2):189-195.

2017 ◽  
Vol 40 (12) ◽  
pp. 709-713
Author(s):  
Kadriye G.U. Güzel ◽  
Ayşe C. Altun ◽  
Zuhal Kirzioğlu

Purpose Many novel materials have been developed such as composite resin, ceramic, zircon or metal-supported ceramic for use in aesthetic restoration of primary teeth and permanent teeth with extensive crown damage. The aim of the present study was to compare microtensile bond strengths on materials using the microtensile bond strength test. Materials and methods The microtensile bond strength on the primary tooth dentin was measured on extracted primary teeth using an indirect method and fracture patterns were evaluated. Results The analysis of bond strengths using the Mann-Whitney U-test did not show significant difference between the rank averages of the compomer and composite resin (p = 0.741). The dentin sections, from which test samples were obtained, contributed to the bond strength; dentin samples obtained just above the pulp had lower bond strength, and the difference was statistically significant (p = 0.005). The adhesive type fracture was the most prevalent fracture type for both materials. Conclusions When the chemical, physiological, and micromorphological differences between primary and permanent teeth are taken into consideration, the success of the materials used for restorations can be different between primary and permanent teeth. Therefore, materials used in the dentistry must be evaluated separately for primary teeth.


2007 ◽  
Vol 32 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Marcela Marquezan ◽  
Bruno Lopes da Silveira ◽  
Luizb Henrique Burnett Jr ◽  
Célia Regina Martins Delgado Rodrigues ◽  
Paulo Floriani Kramer

The purpose of this study was to assess bond strength of three self-etching and two total-etch adhesive systems bonded to primary tooth enamel and dentin. Materials and methods: Forty extracted primary human molars were selected and abraded in order to create flat buccal enamel and occlusal dentin surfaces. Teeth were assigned to one of the adhesive systems: Adper Scotch Bond Multi Purpose, Adper Single Bond 2,Adper Prompt L-Pop, Clearfil SE Bond and AdheSE. Imediately to adhesive aplication, a composite resin(Filtek Z250) block was built up. After 3 months of water storage, each sample was sequentially sectioned in order to obtain sticks with a square cross-sectional area of about 0.72 mm2. The specimens were fixed lengthways to a microtensile device and tested using a universal testing machine with a 50-N load cell at a crosshead speed of 0.5 mm/min. Microtensile bond strength values were recorded in MPa and compared by Analysis of Variance and the post hoc Tukey test (a=0.05). Results: In enamel, Clearfil SE Bond presented the highest values, followed by Adper Single Bond 2, AdheSE and Adper Scotch Bond Multi Purpose, without significant difference. The highest values in dentin were obtained with Adper Scotch Bond Multi Purpose and all other adhesives did not present significant different values from that, except Adper Prompt L-Pop that achieved the lowest bond strength in both substrates. Adper Scotch Bond Multi Purpose and Adper Single Bond 2 presented significantly lower values in enamel than in dentin although all other adhesives presented similar results in both substrates. Conclusions: contemporary adhesive systems present similar behaviors when bonded to primary teeth, with the exception of the one-step self-etching system; and selfetching systems can achieve bond strength values as good in enamel as in dentin of primary teeth.


2020 ◽  
Vol 8 (D) ◽  
pp. 112-117
Author(s):  
Ayah Atif Selim ◽  
Ahmed Fawzy Abo Elezz ◽  
Rehab Khalil Safy

AIM: Investigation of the aging effect on the microtensile bond strength (μTBS) of bulk-fill resin composite (RC) versus a conventionally incrementally applied one. MATERIALS AND METHODS: A total number of 45 sound human impacted third molars extracted molars have been selected to prepare specimens for the μTBS test. Teeth were randomly divided into three groups (C) according to type of RC material which used for restoring the teeth. Where nanohybrid RC (Grandio®SO) was used as the control Group (C1), packable bulk-fill RC (X-tra fil®) was used for restoring teeth in C2 group and flowable bulk-fill RC (X-tra base®) was used for restoring teeth in C3 group. Each group was further subdivided into 3 subgroups (n = 5) according to the water storage time, where in subgroup 1; teeth were stored for 24 h, subgroup 2; teeth were stored for 3 months while for subgroup 3; and teeth were stored for 6 months. After water storage, teeth were sectioned for preparation of μTBS testing beams. Maximum tensile stresses were recorded in megapascal (MPa). RESULTS: After 24 h of water storage, the X-tra base® showed a higher statistically significant μTBS to dentin (33.82 ± 9.84 MPa) than did the other two types of RCs. After 3 months, the X-tra fil® showed the lowest mean value of μTBS (10.90 ± 5.66 MPa), meanwhile, after 6 months of water storage Grandio®SO showed the highest mean value of μTBS (15.85 ± 6.76 MPa). Regardless of the time the X-tra fil® showed the lowest mean of μTBS (15.07 ± 11.73 MPa), while there is no significant difference between the X-tra base® and Grandio®SO. Furthermore, the water aging adversely affects μTBS values which deceased gradually by time. CONCLUSION: The packable bulk-fill RC characterized by lower μTBS to dentin in comparison to the flowable bulk fill and the incrementally applied nanohybrid RCs. Furthermore, the μTBS of the three tested materials decreased gradually by aging.


2014 ◽  
Vol 25 (4) ◽  
pp. 327-331 ◽  
Author(s):  
Gisele Rodrigues da Silva ◽  
Isabela Sousa Araújo ◽  
Rodrigo Dantas Pereira ◽  
Bruno de Castro Ferreira Barreto ◽  
Célio Jesus do Prado ◽  
...  

The aim of this study was to evaluate the microtensile bond strength (µTBS) of two substrates (enamel and dentin) considering two study factors: type of composite resin [methacrylate-based (Filtek Supreme) or silorane-based (Filtek LS)] and aging time (24 h or 3 months). Twenty human molars were selected and divided into 2 groups (n=10) considering two dental substrates, enamel or dentin. The enamel and dentin of each tooth was divided into two halves separated by a glass plate. Each tooth was restored using both tested composite resins following the manufacturer's instructions. The samples were sectioned, producing 4 sticks for each composite resin. Half of them were tested after 24 h and half after 3 months. µTBS testing was carried out at 0.05 mm/s. Data were analyzed by three-way ANOVA and Tukey's HSD tests at α=0.05. Significant differences between composite resins and substrates were found (p<0.05), but no statistically significant difference was found for aging time and interactions among study factors. The methacrylate-based resin showed higher µTBS than the silorane-based resin. The µTBS for enamel was significantly higher than for dentin, irrespective of the composite resin and storage time. Three months of storage was not sufficient time to cause degradation of the bonding interaction of either of the composite resins to enamel and dentin.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Baraba Anja ◽  
Dukić Walter ◽  
Chieffi Nicoletta ◽  
Ferrari Marco ◽  
Sonja Pezelj Ribarić ◽  
...  

The purpose of thisin vitrostudy was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n= 12 per group), according to the pretreatment of the dentin: (1) control group, (2) air abrasion group, and (3) sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P> 0.05). Mean microtensile bond strength (MPa) values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.


2018 ◽  
Vol 10 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Mehrsa Paryab ◽  
Shahrzad Sharifi ◽  
Mohammad Javad Kharazifard ◽  
Nazanin Kumarci

Introduction: One of the main applications of laser in dentistry is the removal of dental caries and preparation of restorative cavities. The morphology and wettability of laser prepared surfaces are different from that of those prepared with conventional method which may affect the quality of the adhesive potential of bonding agents in these surfaces. This study aimed to assess the shear bond strength of a total-etch and self-etch adhesive system to primary tooth dentin prepared by two different energy densities of Er:YAG laser in comparison with surfaces prepared by bur. Methods: A total of 60 human primary second molars extracted for orthodontic purposes were selected and randomly divided into 3 main groups of equal (n=20). Group A: Preparation of dentin surface by bur; group B: Preparation of dentin surface by laser with 300 mJ energy level; group C: Preparation of dentin surface by laser with 400 mJ energy level. In each of the main groups, the teeth were randomly assigned to 2 subgroups. Composite resin material was bonded with the total-etch adhesive system in subgroups A1, B1, and C1 and with the self-etch adhesive system in subgroups A2, B2, and C2. The samples were thermo-cycled, and composite restorations shear bond strength was measured in MPa. Data were analyzed using two-way analysis of variance (ANOVA), and P values less than 0.05 were considered statistically significant. Results: The highest and the lowest shear bond strength values were observed in group A2 (Preparation by bur- Composite resin material bonded by Clearfil SE Bond) and group C2 (Preparation by laser with 400 mJ energy level - Composite resin material bonded by Clearfil SE Bond), respectively. The results showed no statistically significant differences between the study subgroups (P > 0.05). Conclusion: It is concluded that in terms of shear bond strength to dentin, Single Bond and Clearfil SE Bond adhesive agents adequately perform in primary tooth dentin prepared by Er: YAG laser with energy levels of 300 and 400 mJ and frequency of 10 Hz.


2016 ◽  
Vol 10 (03) ◽  
pp. 376-380 ◽  
Author(s):  
Abbas Rizvi ◽  
Muhammad S. Zafar ◽  
Yasser Al-Wasifi ◽  
Wamiq Fareed ◽  
Zohaib Khurshid

ABSTRACT Objective: This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Materials and Methods: Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results: Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). Conclusions: CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone.


2007 ◽  
Vol 361-363 ◽  
pp. 869-872
Author(s):  
J.R. Kim ◽  
M.R. Jung ◽  
Sang Jin Park ◽  
K.K. Choi

The purpose of this study was to evaluate the effect of different etching times on microtensile bond strength(μTBS) to dentin both initial and after thermocycling with 3 different types of total-etching adhesives. Fifty four teeth were divided into 18 groups according to 3 etching times(5, 15, 25sec), 3 types of adhesives(Scotchbond Multipurpose(SM), Single Bond(SB), One-Step(OS)), and thermocycling(0, 2,000cycles). Following the bonding procedure, the specimens were bonded using Z250 composite. Half of them were not thermocycled (control group) and the others were subjected to 2,000 thermocycle (experimental group) and processed for microtensile bond strength testing. The microtensile bond strength(MPa) by different etching time(5, 15, 25s) was 37.7±9.1, 34.3±10.9 and 30.5±7.5 using Scotchbond Multipurpose(SM), 34.6±10.1, 33.8±7.6, 35.3±9.9 using single bond(SB) and 34.3±7.6, 31.3±8.5, 35.8±11.0 using one step(OS). After 2000 thermocycling the specimens, the microtensile bond strength(MPa) was decreased for all dentin bonding systems tested. But when specimens were bonded with OS, there is no significant difference between microtensile bond strength of the groups with the different etching times(5, 15, 25s) (28.2±7.8a , 29.1±8.6a and 28.2±9.4a). And the microtensile bond strength of the groups using SM, SB was decreased significantly when the etchant was applied for 25 sec(p<0.05). After all, the adhesive durability for dentin could be affected by type of solvents in adhesive and etching time. Especially, extended etching time may deteriorate dentin bond strength when ethanol-based adhesive was used


2016 ◽  
Vol 27 (4) ◽  
pp. 442-445 ◽  
Author(s):  
Beatriz Carlos Correa ◽  
Rodrigo Galo ◽  
Camila Scatena ◽  
Maria Cristina Borsatto ◽  
Aloísio Oro Spazzin ◽  
...  

Abstract This study evaluated the effect of matrix metalloproteinase (MMP) inhibitors - 2% (CHX) and sodium fluoride (NaF) (5000 ppm) - on microtensile bond strength (μTBS) of composite resin to Er:YAG laser-irradiated dentin after chemical degradation of the bond interface. The occlusal surface of forty sound human molars was removed exposing the dentin surface (n=10), which was polished, irradiated with Er:YAG laser, acid etched and dried. Twenty specimens were rewetted with 2% CHX (control group) and 20 were rewetted with NaF (5000 ppm). The adhesive system was applied and a 4-mm-high plateau of light-cured composite resin was built up. Resin-dentin sticks were obtained with a rectangular cross-sectional area (0.8-1 mm2) and were either stored in water at 37 ?#61616;C for 24 h or submitted to chemical degradation. For chemical degradation, they were immersed in 10% NaOCl aqueous solution for 5 h and rinsed in water for 1 h. The sticks were submitted to microtensile test in a mechanical testing machine at 0.5 mm/min until failure. Fracture pattern was analyzed using SEM. μTBS values were calculated in MPa and submitted to analysis of variance ANOVA (α=0.05). The variance analysis showed that the 'MMP inhibitor' and 'degradation' factors (p=0.214 and p=0.093, respectively) and interaction between the factors were not statistically significant (p=0.143). Mixed failure predominated in all groups. In conclusion, the 2% CHX and NaF 5000 ppm presented similar μTBS of composite resin to laser-irradiated dentin before and after chemical degradation


2017 ◽  
Vol 41 (3) ◽  
pp. 214-218 ◽  
Author(s):  
Tathiane Larissa Lenzi ◽  
Fabio Zovico Maxnuck Soares ◽  
Rachel de Oliveira Rocha

Objective: To evaluate the effect of bonding strategy on microtensile bond strength (μTBS) of a new universal adhesive system to primary tooth dentin. Study design: Flat dentin surfaces from 25 primary molars were assigned to 5 groups according to the adhesive and bonding approach: Adper Single Bond 2 (two-step etch-and-rinse adhesive) and Clearfil SE Bond (two-step self-etch system), as controls; Scotchbond Universal Adhesive–self-etch, dry or wet-bonding etch-and-rinse strategies. Composite buildups were constructed and the teeth were sectioned to obtain bonded sticks (0.8 mm2) to be tested under tension at 1mm/min. The μTBS means were analyzed by one-way ANOVA and Tukey's tests (α = 0.05). Failure mode was evaluated using a stereomicroscope (400×). Results: Universal adhesive applied following both dry and wet-bonding etch-and-rinse strategies showed similar bond strength compared with control adhesive systems. Self-etch approach resulted in the lowest μTBS values. For all groups, adhesive/mixed failure prevailed. The percentage of premature debonded specimens was higher when the universal adhesive was used as self-etch mode. Conclusion: The universal adhesive does not share the same versatility of being used in the etch-and-rinse and self-etch approaches; however, the use of the new adhesive following either wet or dry-bonding may be a suitable option as alternative to two-step etch-and-rinse adhesive protocol.


Sign in / Sign up

Export Citation Format

Share Document