scholarly journals Mass Propagation of Dicentra spectabilis L. Lemaire Through In vitro Suspension Culture

2004 ◽  
Vol 31 (2) ◽  
pp. 121-126 ◽  
2006 ◽  
Vol 11 (8) ◽  
pp. 922-932 ◽  
Author(s):  
Andrea Ivascu ◽  
Manfred Kubbies

Spheroids are widely used in biology because they provide an in vitro 3-dimensional (3D) model to study proliferation, cell death, differentiation, and metabolism of cells in tumors and the response of tumors to radiotherapy and chemotherapy. The methods of generating spheroids are limited by size heterogeneity, long cultivation time, or mechanical accessibility for higher throughput fashion. The authors present a rapid method to generate single spheroids in suspension culture in individual wells. A defined number of cells ranging from 1000 to 20,000 were seeded into wells of poly-HEMA-coated, 96-well, round-or conical-bottom plates in standard medium and centrifuged for 10 min at 1000 g. This procedure generates single spheroids in each well within a 24-h culture time with homogeneous sizes, morphologies, and stratification of proliferating cells in the rim and dying cells in the core region. Because a large number of tumor cell lines form only loose aggregates when cultured in 3D, the authors also performed a screen for medium additives to achieve a switch from aggregate to spheroid morphology. Small quantities of the basement membrane extract Matrigel, added to the culture medium prior to centrifugation, most effectively induced compact spheroid formation. The compact spheroid morphology is evident as early as 24 h after centrifugation in a true suspension culture. Twenty tumor cell lines of different lineages have been used to successfully generate compact, single spheroids with homogenous size in 96-well plates and are easily accessible for subsequent functional analysis.


1991 ◽  
Vol 69 (4) ◽  
pp. 822-830 ◽  
Author(s):  
Ulisses G. Batista ◽  
Verna J. Higgins

The production and distribution of the phytoalexin falcarindiol in tomato foliage infected with leaf mold was examined to determine how the fungus Cladosporium fulvum is able to colonize and sporulate in an apparently antifungal environment. In a compatible interaction (cv. Potentate – C. fulvum race 2.3), by 12 and 15 days after inoculation, solvent-extractable falcarindiol and two other phytoalexins from tomato, compound 2 (probably falcarinol) and compound 3 (unidentified), reached concentrations considerably in excess of ED50 values for inhibition of the fungus. In contrast, intercellular (apoplastic) fluids obtained from similarly infected leaflets contained only traces of falcarindiol. ED50 values for germination and germ-tube growth of C. fulvum increased as the incubation time was extended, suggesting that adaptation or recovery was possible at the concentrations tested. In in vitro experiments, C. fulvum appeared to readily metabolize falcarindiol, as did a Lycopersicon cell suspension culture. Binding of falcarindiol to living and dead fungal and plant cells was also observed. Falcarindiol, injected into tomato leaflets, decreased rapidly and was only recovered in trace amounts by 24 h. The results suggest that falcarindiol and probably the two other phytoalexins do not reach sufficient concentrations in the apoplast of an infected susceptible leaf to have an effect on growth and sporulation of C. fulvum. Key words: leaf mold, Fulvia fulva, falcarindiol, falcarinol.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 43 (10) ◽  
pp. 1325-1330 ◽  
Author(s):  
Lucymeire Souza Morais-Lino ◽  
Janay Almeida dos Santos-Serejo ◽  
Sebastião de Oliveira e Silva ◽  
José Raniere Ferreira de Santana ◽  
Adilson Kenji Kobayashi

The objective of this study was to establish cell suspension culture and plant regeneration via somatic embryogenesis of a Brazilian plantain, cultivar Terra Maranhão, AAB. Immature male flowers were used as explant source for generating highly embryogenic cultures 45 days after inoculation, which were used for establishment of cell suspension culture and multiplication of secondary somatic embryos. Five semisolid culture media were tested for differentiation, maturation, somatic embryos germination and for plant regeneration. An average of 558 plants per one milliliter of 5% SCV (settled cell volume) were regenerated in the MS medium, with 11.4 µM indolacetic acid and 2.2 µM 6-benzylaminopurine. Regenerated plants showed a normal development, and no visible somaclonal variation was observed in vitro. It is possible to regenerate plants from cell suspensions of plantain banana cultivar Terra using MS medium supplemented with 11.4 µM of IAA and 2.2 µM of BAP.


2017 ◽  
Vol 16 (1) ◽  
pp. 1-11
Author(s):  
Aryani Leksonowati ◽  
Witjaksono Witjaksono ◽  
Diah Ratnadewi

Aquilaria malaccensis Lam. is a plant species producing fragrant woody material that contains some resin. The compounds can be used as medicine and perfume. Sesquiterpenoid, one group of compounds has been found being synthesized and subsequently extracted from callus and cell suspension culture of Aquilaria species. The aim of this research was to find a method of producing friable calli and cell suspension cultures from leaves or internodes of A. malaccensis in vitro by using suitable plant growth regulators; cell suspension that will suitably serve as material to produce sesquiterpenoid afterwards. Calli were established in almost all treatments of auxin-cytokinin on both leaves and internod explants. The treatment of 10 mg/L IBA induced the highest percentage of callus coverage from leaves with a rather compact structure. The combined treatment of 1–2 mg/L 2.4-D and 0.2–0.3 mg/L BA induced friable callus formation in more than 80% of cultures with 27–32% callus coverage percentage.  The use of 2,4-D induced a better formation of cell suspension than Picloram, with maximum volume up to 7 mL. Cell suspension culture with fine and homogenous aggregate could be established in the medium supplemented with 0.5 –1 mg/L 2,4-D.


2017 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Yosi Zendra Joni ◽  
Riry Prihatini ◽  
Darda Efendi ◽  
Ika Roostika

<p>Somatic embryogenesis is a technique for regenerating embryos derived from somatic cells of various plant species. This technique along with the utilization of plant growth regulator (PGR) might benefit for mass propagation and improvement of plant species through biotechnological tools. The study aimed to determine the effect of different plant growth regu-lators, namely 6-benzyladenine (BA) and thidiazuron (TDZ) on the embryogenic callus induction as well as casein hydrolysate and malt extract on the somatic embryo development of mangosteen. The explants used were in vitro young stems of mangosteen clone Leuwiliang. This study consisted of two experiments, namely induction of embryogenic callus and formation of somatic embryo. The first experiment was arranged as factorial in a completely randomized design with BA (0 and 0.7 mg l-1) as the first factor and TDZ (0, 0.1, 0.5 and 1.0 mg l-1) as the second factor. The second experiment consisted of four treatments, i.e. casein hydrolysate and malt extract at the rate of 500 and 1,000 mg l-1. The results showed that the best medium for embryogenic callus induction was MS supplemented with 0.1 mg l-1 TDZ, which resulted semifriable calli. Casein hydrolysate and malt extract could not induce the formation of somatic embryos. After two times subcultures on the same MS medium supplemented with 0.5 mg l-1 TDZ and 0.7 mg l-1 BA, a total of 33.8 somatic embryos per explant was induced. The successful somatic embryogenesis would support mangosteen breeding and in vitro mass propagation program.</p>


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
U. Bhavyashree ◽  
K. Lakshmi Jayaraj ◽  
K. S. Muralikrishna ◽  
K. K. Sajini ◽  
M. K. Rajesh ◽  
...  

<p>An attempt was made to establish highly competent embryogenic cell suspension culture in coconut, a species recalcitrant to in vitro culture. Embryogenic calli were initiated from shoot meristem explants of coconut. Y3 medium supplemented with 2.4-D (4.5 μM) and glutamine (34.2 μM) was found to be the best medium to initiate cell suspension. Growth evaluation was done by packed cell volume (PCV) and it was found that maximum growth volume of 9.9% was reached at 200 days of culture initiation. About 52% of viable cells were detected through fluorescent microscopy. Cell aggregation was noticed in Y3 medium supplemented with glutamine (34.2 μM), malt extract (100mg/l), biotin (40.9 μM) and kinetin (9.3 μM), but further progress could not be achieved. It was also observed that embryogenic calli were not of a friable type, but were associated with densely aggregated cells. Because of its hard nature, we were unsuccessful to obtain high quality cell suspension.</p>


Sign in / Sign up

Export Citation Format

Share Document